IIUM Repository

Mixture model for a parametric study on turbulent convective heat transfer of water-Al2O3 nanofluid

Al Mahmud, Suaib and Ismail, Ahmad Faris and Bappy, Jamirul Habib and Noor, Wazed Ibne (2022) Mixture model for a parametric study on turbulent convective heat transfer of water-Al2O3 nanofluid. CFD Letters, 14 (2). pp. 42-58. ISSN 2811-3969

[img] PDF - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Nanofluids have become a point of intense interest for its usability in sectors where convective heat transfer is a requirement. Whereas knowing the overall thermal transport characteristics of nanofluids is the key for their proper utilisation, the domain of nanofluids turbulent convective heat transfer is still heavily understudied, where conducting a parametric study on their heat transferring behaviour along with assessing the effect of boundary conditions on their heat transfer enhancement and the available CFD models’ efficiency to account for nanoparticle size are vital necessities. In this study, highly turbulent flow of nanofluids inside a circular pipe under constant wall temperature has been simulated using the Mixture model. Correlations between all the parameters related to nanofluids turbulent convective heat transfer have been established and the impact of variable temperature boundary condition on nanofluids heat transfer enhancement has been investigated. In addition, Mixture models’ ability to assess nanoparticle size variation on heat transfer of nanofluids has been shown. Results suggest that nanofluids heat transfer is dominated by the amount of nanoparticle concentration present in the base fluid when Reynolds number is kept constant. Also, for a certain particle concentration, intensification of heat transfer is guided by the degree of turbulence. The findings also depict that nanofluids heat transferring capability is independent of the temperature boundary conditions used and Mixture model is unable to assess the change in heat transfer due to variation in nanoparticle size.

Item Type: Article (Journal)
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TP Chemical technology > TP155 Chemical engineering
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Mechanical Engineering
Kulliyyah of Engineering > Department of Mechatronics Engineering
Depositing User: Prof Dr Ahmad Faris Ismail
Date Deposited: 09 Mar 2022 14:15
Last Modified: 09 Mar 2022 14:22
URI: http://irep.iium.edu.my/id/eprint/97115

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year