IIUM Repository (IREP)

Hardsurface layer of TiC embedded alloy steel by TIG torch technique

Maleque, Md. Abdul (2015) Hardsurface layer of TiC embedded alloy steel by TIG torch technique. In: The 2015 ICBTS International Academic Research Conference in Europe & America, 22nd-24th October 2015, The Movenpick Hotels & Resorts Berlin, Germany.

[img] PDF - Published Version
Restricted to Repository staff only

Download (629kB) | Request a copy

Abstract

Hardsurface layer was developed by tungsten inert gas (TIG) surface melting on AISI 4340 alloy steel with pre-placed TiC powder and energy input of 1344 J/mm in an argon gas environment. The composite coating layer was produced using an 80 A current, 35 volts potential difference and with a traversing speed reaching 1 mm /sec. The developed hardsurface was characterized in terms of surface condition, microstructure and hardness. The tribological behavior of the composite coating was evaluated using a pin on disc tribometer in Jatropha Curcas biodiesel. The surface appearance hard-faced layer was found to be free from any obvious defect. The TIG hard facing layer produced dendritic structure due to the dissolution of preplaced powder in the steel melt. The generated coating layer has a depth of 905 µm and 3.22 mm is the width of the track. The scanning electron microscope (SEM) analysis of the melt tracks reveals two common types of TiC, dendritic and cubic, precipitated in the steel matrix. The results showed that the incorporation of TiC particulate in the steel matrix increases the hardness and wear resistance by a factor of 3 and 2, respectively. The morphology of the wear tracks showed that the TiC particulates are strongly bonded to the substrate material giving the treated surface increased resistance to plastic deformation related to wear. The uncoated (low alloy steel) sample showed severe plastic deformation, micro-cracks, flake debris, and the presence of pitting corrosion due to the corrosive nature of biodiesel. Therefore, hard surface development on AISI 4340 steel with particulate TiC in the presence of TIG torch is an effective method for reducing corrosive wear in biodiesel environment.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: 6103/45628 (ISBN: 9786163825902)
Uncontrolled Keywords: Hardsurfacing, TIG torch surface melting, wear, hardness
Subjects: T Technology > T Technology (General) > T173.2 Technological change
T Technology > TA Engineering (General). Civil engineering (General) > TA401 Materials of engineering and construction
T Technology > TS Manufactures > TS200 Metal manufactures. Metalworking
Kulliyyahs/Centres/Divisions/Institutes: Kulliyyah of Engineering > Department of Manufacturing and Materials Engineering
Depositing User: Prof Dr. M A Maleque
Date Deposited: 23 Dec 2015 09:29
Last Modified: 23 May 2016 10:35
URI: http://irep.iium.edu.my/id/eprint/45628

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year