IIUM Repository

Optimization of composite fuselage frame layup for energy absorption under crash loading

Syed Mohamed Ali, Jaffar and M.J.A ., Muhammad Nazri (2024) Optimization of composite fuselage frame layup for energy absorption under crash loading. Journal of Advanced Research in Applied Mechanics, 122 (1). pp. 111-129. E-ISSN 2289-7895

[img] PDF - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Considerable research has been carried out on aircraft fuselage design, with a particular focus on frames due to their role in energy absorption during crash impacts. While metallic alloys have traditionally been used for frame construction, the growing popularity of composites has led to a shift towards their utilization. However, the research specifically targeting composites for fuselage frames is limited in scope. This study aims to bridge this gap by conducting a comprehensive analysis using LS-DYNA software. The composites investigated in this analysis include Standard Carbon Fiber, Graphite AS-3501-6 Fiber, E Glass Fiber, and Kevlar Fiber. Parameters such as deformation, energy absorption, maximum normal stresses, and shear stresses are compared against Aluminum Al 7075-T6, a commonly employed metallic alloy. Furthermore, an optimization process is performed, focusing on the laminate orientation of standard carbon fibre, to determine the most favourable orientation for each parameter studied. The results highlight that employing Standard Carbon Fiber, with laminates having 90° ply such as quasi-isotropic, cross-ply and unidirectional 90° laminates lead to superior outcomes in terms of energy absorption and deformation for the fuselage frame under crash loading.

Item Type: Article (Journal)
Uncontrolled Keywords: FEA; LS-DYNA; Composite Laminates; Fuselage Frame; Drop Test; CFRP; GFRP
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA349 Mechanics of engineering. Applied mechanics
T Technology > TL Motor vehicles. Aeronautics. Astronautics
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL500 Aeronautics
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering > Department of Mechanical Engineering
Kulliyyah of Engineering
Depositing User: Dr Mohamed Ali Jaffar Syed
Date Deposited: 15 Aug 2024 16:25
Last Modified: 15 Aug 2024 16:25
URI: http://irep.iium.edu.my/id/eprint/113941

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year