IIUM Repository

Dual-stage artificial neural network (ANN) model for sequential LBMM-μEDM-based micro-drilling

Noor, Wazed Ibne and Saleh, Tanveer and Rashid, Mir Akmam Noor and Ibrahim, Azhar Mohd and Ali, Mohamed Sultan Mohamed and UNSPECIFIED (2021) Dual-stage artificial neural network (ANN) model for sequential LBMM-μEDM-based micro-drilling. The International Journal of Advanced Manufacturing Technology. pp. 1-24. ISSN 0268-3768 E-ISSN 1433-3015

[img] PDF - Published Version
Restricted to Registered users only

Download (9MB) | Request a copy
[img]
Preview
PDF (SCOPUS)
Download (614kB) | Preview

Abstract

A sequential process combining laser beam micromachining (LBMM) and micro electro-discharge machining (μEDM) for the micro-drilling purpose was developed to incorporate both methods’ benefits. In this sequential process, a guiding hole is produced through LBMM first, followed by μEDM applied to that same hole for more fine machining. This process facilitates a more stable, efficient machining regime with faster processing (compared to pure μEDM) and a much better hole quality (compared to LBMMed holes). Studies suggest that strong correlations exist between the various input and output parameters of the sequential process. However, a mathematical model that maps and simultaneously predicts all these output parameters from the input parameters is yet to be developed. Our experimental study observed that the μEDMfinishing operation’s various output parameters are influenced by the morphological condition of the LBMMed holes. Hence, an artificial neural network (ANN)- based dual-stage modeling method was developed to predict the sequential process’s outputs. The first stage of the dual-stage model was utilized to predict various LBMM process outputs from different laser input parameters. Furthermore, in the second stage, LBMM-predicted outputs (such as pilot hole entry area, exit area, recast layer, and heat-affected zone) were used for the final prediction of the sequential process outputs (i.e., machining time by μEDM, machining stability during μEDM in terms of short circuit/arcing count, and toolwear during μEDM). The model was evaluated based on the average RMSE (rootmean square errors) values for the individual output parameters’ complete set data, i.e., μEDMtime, short circuit/arcing count, and tool wear. The values of average RMSE for the parameters as mentioned earlier were found to be 0.1272 (87.28% accuracy), 0.1085 (89.15% accuracy), and 0.097 (90.3% accuracy), respectively.

Item Type: Article (Journal)
Uncontrolled Keywords: Artificial neural network . Laser . μEDM . Micromachining . Sequential
Subjects: T Technology > T Technology (General)
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Mechatronics Engineering
Depositing User: Dr. Tanveer Saleh CEng MIMechE
Date Deposited: 06 Sep 2021 15:28
Last Modified: 06 Sep 2021 15:28
URI: http://irep.iium.edu.my/id/eprint/91994

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year