IIUM Repository

The radiation effect on low noise amplifier implemented in the space-aerial–terrestrial integrated 5G networks

Youssouf, Abdouraouf S. and Habaebi, Mohamed Hadi and Hasbullah, Nurul Fadzlin (2021) The radiation effect on low noise amplifier implemented in the space-aerial–terrestrial integrated 5G networks. IEEE Access, 9. pp. 46641-46651. ISSN 2169-3536

This is the latest version of this item.

[img] PDF - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
[img]
Preview
PDF (Scopus) - Supplemental Material
Download (356kB) | Preview
[img]
Preview
PDF (wos) - Supplemental Material
Download (661kB) | Preview
[img] PDF (Acceptance letter) - Supplemental Material
Restricted to Registered users only

Download (143kB) | Request a copy

Abstract

This paper provides the details of a study on the effects of electron irradiation on two Low Noise Amplifiers (LNA), the Gallium-Arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) based and the Silicon-Germanium (SiGe) Heterojunction Bipolar Transistor (HBT)-based. Previous studies have shown that the properties of GaAs and SiGe HBT’s are very tolerant of gamma, neutron, and proton irradiation without additional radiation hardening. Nowadays, commercials on the shelves (COTS) LNAs have been used in CubeSat space communication systems which may be connected to other communication networks for the implementation of the space-aerial- terrestrial integrated 5G network (SATIN) systems projects, for satellites, launched into Low and Medium Earth Orbits. Previous studies suggest that the electron radiation in space may degrade the LNAs’ performance and might even lead to its failure. Located at the front end of the communication receiver system, this paper conducted such investigation to evaluate the performance under the radiation of the GaAs and SiGe LNAs considering the physics of the technology of each LNA, respectively. The results indicate that both SiGe and GaAs technologies are affected after electron irradiation. As a result, this degradation of the LNAs’ performance affected the communications system performance of the inter-satellite radio link. After the assessment of the quality performance of the communication link at the system level, it has been found that the inter-satellite space link will be at risk under high space radiation dose and the link BER degrades proportionally to the radiation dose level.

Item Type: Article (Journal)
Additional Information: 6727/88857
Uncontrolled Keywords: Degradation, electron irradiation, gallium arsenide, inter-satellite link, low noise amplifier, silicon germanium, 5G.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Electrical and Computer Engineering
Depositing User: Dr. Mohamed Hadi Habaebi
Date Deposited: 31 Mar 2021 15:51
Last Modified: 02 Jan 2022 21:57
URI: http://irep.iium.edu.my/id/eprint/89040

Available Versions of this Item

  • The radiation effect on low noise amplifier implemented in the space-aerial–terrestrial integrated 5G networks. (deposited 31 Mar 2021 15:51) [Currently Displayed]

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year