IIUM Repository

Compressed channel estimation for massive MIMO-OFDM systems over doubly selective channels

Uwaechia, Anthony Ngozichukwuka and Mahyuddin, Nor Muzlifah and Ain, Mohd Fadzil and Abdul Latiff, Nurul Muazzah and Za'bah, Nor Farahidah (2019) Compressed channel estimation for massive MIMO-OFDM systems over doubly selective channels. Physical Communication, 36. ISSN 1874-4907

[img] PDF - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy
[img] PDF (Scopus) - Supplemental Material
Restricted to Repository staff only

Download (227kB) | Request a copy
[img]
Preview
PDF (wos) - Supplemental Material
Download (450kB) | Preview

Abstract

Doubly selective (DS) channel estimation for the downlink massive multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is a challenging problem, due to the requirements on high pilots overhead and prohibitive complexity. In this paper, by exploiting the highly correlated spatial structure of the obtained array response vectors and sparsity of the multipath signal components of the massive MIMO-OFDM channels, a modified spatial basis expansion model (modified-SBEM) is introduced. Thus, using complex exponential (CE-) modified-SBEM (i.e., modified CE-SBEM) can improve the resolution of the angles of departures (AoDs) information to represent the downlink with far fewer parameter dimensions, since the AoDs are much slower than path gains. Subsequently, we jointly design the effective pilot power and pilot placement for sparse channel estimation by means of an extended model. Our design is based on the block-coherence and sub-coherence simultaneous minimization of the measurement matrix associated with the massive MIMO-OFDM system pilot subcarriers. Furthermore, we leverage the sparse nature of the massive MIMO-OFDM system to formulate the quantized AoDs estimation into a block-sparse signal recovery problem, where the measurement matrix is designed based on the estimated virtual AoD. Thus, a new algorithm namely, generalized quasi-block simultaneous orthogonal matching pursuit (gQBSO), is introduced to solve the problem by providing sparse signal reconstruction solution. Simulation results demonstrate that the proposed scheme can effectively estimate the DS channel for massive MIMO-OFDM systems compared with other existing algorithms. For example, at SNR=20 dB for K=4 users, Doppler shift=0.093 with NT=32 antenna size, the adaptive-QBSO algorithm with G-SBEM and the proposed gQBSO with modified-SBEM can realize approximately 75.44%and 85.14% of the NMSE achieved by the oracle estimator with modified-SBEM.

Item Type: Article (Journal)
Additional Information: 5466/79233
Uncontrolled Keywords: Channel estimation; Communication channels; Compressed sensing (CS); Doubly selective (DS) channel; Massive MIMO; OFDM; Pilot design; Sparse matrices; Spatial basis expansion model (SBEM)
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101 Telecommunication. Including telegraphy, radio, radar, television
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800 Electronics. Computer engineering. Computer hardware. Photoelectronic devices
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering > Department of Electrical and Computer Engineering
Depositing User: Dr. Nor Farahidah Za'bah
Date Deposited: 15 Apr 2020 15:44
Last Modified: 15 Apr 2020 15:44
URI: http://irep.iium.edu.my/id/eprint/79233

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year