IIUM Repository

A novel non-intrusive vibration energy harvesting method for air conditioning compressor unit

Yang, Chuan Choong and Noor Hanafi, Noor Fiqri Razqi and Mohamad Hanif, Noor Hazrin Hany and Ismail, Ahmad Faris and Chang, Hsueh-Hsien (2021) A novel non-intrusive vibration energy harvesting method for air conditioning compressor unit. Sustainability, 13 (18). E-ISSN 2071-1050

[img] PDF - Published Version
Restricted to Registered users only

Download (11MB) | Request a copy


The purpose of harvesting vibration energy is to obtain clean and sustainable energy by converting vibration energy from ambient sources into a voltage output. In this work, a piezoelectric sensor, PZT-5H is attached to a 3D printed and custom-made mounting to be placed at an air conditioning condenser unit, to harvest vibration energy. The configuration of the harvester is non-intrusive, in which the harvester did not intrude into compressor unit operation. Temperature (20 °C, 22 °C, and 24 °C) and air volume flow rates (3 levels of air volume flow rate at 245 L/second, 274 L/second, and 297 L/second) were taken into consideration in this investigation. An accelerometer was first used to investigate the optimum vibration frequency in Hertz, and six locations were identified. Next, the piezoelectric sensor was mounted at these six locations, and the output root-mean-square (RMS) voltage from the piezoelectric sensor was obtained. The analysis of variance (ANOVA) indicated that temperature and air volume flow rates factors were significant. It was found that the location identified with the highest amount of vibration at 830.2 Hz from accelerometer measurement, was also the highest amount of RMS voltage, at 510.82 mV, harvested by the piezoelectric, from the temperature of 20 °C and air volume flow rates at high level (air flow volume flow rate at 297 L/second). From this work, it is feasible to utilize this novel method of harvesting waste vibration energy from the air conditioning compressor unit.

Item Type: Article (Journal)
Uncontrolled Keywords: energy harvesting; vibration energy; piezoelectric sensor; sustainable energy; air conditioning compressor
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA349 Mechanics of engineering. Applied mechanics
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800 Electronics. Computer engineering. Computer hardware. Photoelectronic devices
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Manufacturing and Materials Engineering
Kulliyyah of Engineering > Department of Mechatronics Engineering
Depositing User: Ir Dr Chuan Choong Yang
Date Deposited: 27 Sep 2021 17:05
Last Modified: 27 Sep 2021 17:05
URI: http://irep.iium.edu.my/id/eprint/92510

Actions (login required)

View Item View Item


Downloads per month over past year