IIUM Repository

Evaluation of metabolomics behavior of human colon cancer HT29 celllines treated with ionic liquid graviola fruit pulp extract

Daddiouaissa, Djabir and Amid, Azura and Abdullah Sani, Muhamad Shirwan and A. M. Elnour, Ahmed (2021) Evaluation of metabolomics behavior of human colon cancer HT29 celllines treated with ionic liquid graviola fruit pulp extract. Journal of Ethnopharmacology, 270. pp. 1-8. ISSN 0378-8741 E-ISSN 1872-7573

[img]
Preview
PDF
Download (3MB) | Preview
[img]
Preview
PDF (scopus)
Download (99kB) | Preview
[img]
Preview
PDF (wos) - Supplemental Material
Download (285kB) | Preview

Abstract

Ethnopharmacological relevance: Medicinal plants have been used by indigenous people across the world for centuries to help individuals preserve their wellbeing and cure diseases. Annona muricata L. (Graviola) which is belonging to the Annonaceae family has been traditionally used due to its medicinal abilities including antimicrobial, anti-inflammatory, antioxidant and cancer cell growth inhibition. Graviola is claimed to be a potential antitumor due to its selective cytotoxicity against several cancer cell lines. However, the metabolic mechanism information underlying the anticancer activity remains limited. Aim of the study: This study aimed to investigate the effect of ionic liquid-Graviola fruit pulp extract (IL-GPE) on the metabolomics behavior of colon cancer (HT29) by using an untargeted GC-TOFMS-based metabolic profiling. Materials and methods: Multivariate data analysis was used to determine the metabolic profiling, and the ingenuity pathway analysis (IPA) was used to predict the altered canonical pathways after treating the HT29 cells with crude IL-GPE and Taxol (positive control). Results: The principal components analysis (PCA) identified 44 metabolites with the most reliable factor loading, and the cluster analysis (CA) separated three groups of metabolites: metabolites specific to the non-treated HT29 cells, metabolites specific to the treated HT29 cells with the crude IL-GPE and metabolites specific to Taxol treatment. Pathway analysis of metabolomic profiles revealed an alteration of many metabolic pathways, including amino acid metabolism, aerobic glycolysis, urea cycle and ketone bodies metabolism that contribute to energy metabolism and cancer cell proliferation. Conclusion: The crude IL-GPE can be one of the promising anticancer agents due to its selective inhibition of energy metabolism and cancer cell proliferation.

Item Type: Article (Journal)
Additional Information: 3688/87886
Uncontrolled Keywords: Ethnopharmacological : cancer cell growth : Graviola
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA164 Bioengineering
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): International Institute for Halal Research and Training (INHART)
Depositing User: Mrs Anis Shafinaz Md. Salleh
Date Deposited: 18 Jan 2021 17:36
Last Modified: 18 May 2021 16:06
URI: http://irep.iium.edu.my/id/eprint/87886

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year