IIUM Repository

Improved constraint handling approach for predictive functional control using an implied closed-loop prediction

Abdullah, Muhammad and Rossiter, John Anthony and Abdul Ghaffar, Alia Farhana (2021) Improved constraint handling approach for predictive functional control using an implied closed-loop prediction. IIUM Engineering Journal, 22 (1). pp. 323-338. ISSN 1511-788X E-ISSN 2289-7860

[img]
Preview
PDF - Published Version
Download (4MB) | Preview

Abstract

Predictive Functional Control is a simple alternative to the traditional PID controller which has the capability to handle process constraints more systematically. Nevertheless, the most basic form of PFC has suffered from ill-posed prediction due to its simplicity in formulation and assumption of constant future input dynamics. Although some constraints can be satisfied, nevertheless the performance may be very conservative due to this issue. The main objective of this paper is to improve the constrained performance of a PFC controller with a minimum modification of the existing formulation. Specifically, a novel constraint handling approach for PFC is proposed based on an implied closed-loop prediction. Instead of assuming a constant input as deployed in the conventional open-loop prediction, the implied closed-loop input dynamics are utilised to detect future constraint violations. In addition, a future perturbation is introduced into the prediction structure as an extra degree of freedom for satisfying the constraints. Two simulation results confirm that the proposed approach gives far less conservative constraint handling and thus better control performance compared to the nominal PFC. Furthermore, this novel implementation also alleviates the well-known tuning difficulties and prediction inconsistency issues that are associated with conventional PFC when handling constraints. ******************************************************************************* Kawalan Kefungsian Ramalan adalah alternatif mudah kepada kawalan tradisional PID yang mempunyai kekangan keupayaan bagi mengawal proses secara lebih tersusun. Namun, keadaan paling asas pada kesan PFC adalah daripada ramalan tak teraju-rapi yang disebabkan oleh formula ringkas dan anggapan dinamik input yang sama bagi masa depan. Walau kekangan ini dapat diatasi, namun prestasi akan berubah secara konservatif disebabkan oleh isu ini. Objektif utama kajian ini adalah bagi membaiki kekangan prestasi kawalan PFC dengan modifikasi minimum formula yang ada. Secara spesifik, pendekatan nobel kawalan PFC dicadangkan berdasarkan ramalan lingkaran-tertutup. Selain anggapan input tetap seperti yang dilakukan pada ramalan lingkaran-terbuka yang konservatif, dinamik input yang dibuat pada lingkaran-tertutup telah digunakan bagi mengesan kekangan masa depan yang bertentangan. Tambahan, gangguan yang bakal berlaku pada masa depan telah diperkenalkan ke dalam struktur ramalan sebagai tambahan darjah pada kebebasan bagi mengatasi kekangan. Dua dapatan simulasi kajian menyetujui pendekatan yang dicadangkan dan menyebabkan sangat kurang kekangan pengendalian pada sistem konservatif, oleh itu kawalan yang lebih bagus pada prestasi berbanding pada PFC nominal. Selain itu, pendekatan nobel ini juga menghilangkan kesukaran pelarasan yang dikenali ramai dan ramalan isu tidak konsisten yang terdapat pada PFC konvensional apabila mengendali kekangan.

Item Type: Article (Journal)
Additional Information: 8300/87642
Uncontrolled Keywords: predictive functional control (PFC); constraints handling; implied closed-loop prediction; constrained predictive controller
Subjects: T Technology > TJ Mechanical engineering and machinery
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Mechanical Engineering
Depositing User: Dr Alia Farhana Abdul Ghaffar
Date Deposited: 07 Jan 2021 15:25
Last Modified: 07 Jan 2021 15:25
URI: http://irep.iium.edu.my/id/eprint/87642

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year