Nor Hairin, Assayidatul Laila and Romainor, M. N. and Othman, Raihan and Mohd Daud, Farah Diana (2018) Electrodeposition of zinc antimony alloy thermoelectric materials. In: "International Conference on Advances in Manufacturing and Materials Engineering 2017, ICAMME 2017", 8-9 August 2017, International Islamic University Malaysia (IIUM), Gombak Campus, Kuala Lumpur.
PDF
- Published Version
Restricted to Registered users only Download (969kB) | Request a copy |
|
PDF (Scopus)
- Supplemental Material
Restricted to Registered users only Download (446kB) | Request a copy |
Abstract
Zinc antimonite, Zn4Sb3 is a promising thermoelectric material because of its high thermoelectric performance and abundance of Zn and Sb in nature. Thus, in this study, samples of Zn-Sb alloy were prepared using electrodeposition method because of its simple experimental set-up, which also carried out in the room temperature. From the XRD results, all samples deposited exhibit Zn-Sb alloy compositions. The best results were S1 and S3 as they had dominant peaks that showed the crystal lattice of Zn4Sb3. From the SEM images, the surface morphology of Zn-Sb alloy deposited samples showed were all-irregular, course and rough structures. While, the atoms arrangement of the deposited samples were all flowery-like. Based on physical properties characterization, the best samples; S1 (0.1M ZnCl2-0.1M SbCl3, 100mA, 120min) and S3 (0.1M ZnCl2-0.1M SbCl3, 50mA, 120min), were selected and investigated their thermoelectric performances; electrical conductivity and Seebeck coefficient, to determine their power factor, PF. Heat capacity of the samples was also examined to relate it with thermal conductivity of Zn-Sb deposited samples. For thermoelectric performance, S1 obtained power factor of 1.37x10-7V/K. Ω.cm at 102°C with the Seebeck coefficient of 181μV/K. While as for S3, the power factor was 1.58x10-7V/K. Ω.cm with Seebeck coefficient of 113μV/K at 101°C. From DSC analysis, it showed that S3 obtained higher Cp than S1. Cp for S3 was 46.8093mJ/°C while S1 was 38.3722mJ/°C.
Item Type: | Conference or Workshop Item (Plenary Papers) |
---|---|
Additional Information: | 7683/64397 |
Uncontrolled Keywords: | Electrodeposition; Antimony alloy thermoelectric materials |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2000 Dynamoelectric machinery T Technology > TS Manufactures |
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): | Kulliyyah of Engineering Kulliyyah of Engineering > Department of Manufacturing and Materials Engineering |
Depositing User: | Raihan Othman |
Date Deposited: | 25 Jun 2018 10:05 |
Last Modified: | 25 Jun 2018 10:05 |
URI: | http://irep.iium.edu.my/id/eprint/64397 |
Actions (login required)
View Item |