IIUM Repository

Hydroxyapaptite layer formation on titanium alloys surface using micro-arc oxidation

Adeleke, S. A. and Sopyan, Iis and Bushroa, A. R. (2015) Hydroxyapaptite layer formation on titanium alloys surface using micro-arc oxidation. ARPN Journal of Engineering and Applied Sciences, 10 (21). pp. 10101-10108. ISSN 1819-6608

[img] PDF
Restricted to Repository staff only

Download (485kB) | Request a copy


In recent years, research on titanium and its alloys had increased significantly for hard tissue replacement and dental applications due to their excellent mechanical properties such as high strength to weight ratio, low density and biocompatibility. However, there are some surface originated problems associated with titanium (Ti): poor implant fixation, lack of osseoconductivity, wear and corrosion in physiological environment. As the interaction between the implant and host bone is a surface phenomenon, surface properties play a prominent role in determining both the biological response to implant and the material response to the biological condition. To improve osseointegration of titanium with bone, hydroxyapatite (HA) has been widely used due to its close similarity to bone mineral. Promising new studies have been reported regarding coating titanium implant with HA using various surface modification techniques to improve the long term stability of titanium implants. Micro-arc oxidation (MAO) has attracted a lot of interest owing to its ability to produce a thick microporous oxide layer on titanium implants. The significant part of MAO is that HA can be incorporated in the oxide layer when processed in electrolytes containing calcium and phosphorous ions. The oxide layer containing hydroxyapatite can be subsequently increased via hydrothermal treatment. The HA produced on titanium surfaces has attractive features such as high porosity and adherent layer which facilitate good clinical outcomes. This review presents the state of the art of MAO and possible further suggestion of MAO for the production of HA on titanium implants.

Item Type: Article (Journal)
Additional Information: 4809/46968
Uncontrolled Keywords: titanium and its alloys, Hydroxyapatite, Micro-arc oxidation, surface modification
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA401 Materials of engineering and construction
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering > Department of Manufacturing and Materials Engineering
Depositing User: PROF. DR. IIS SOPYAN
Date Deposited: 04 Jan 2016 09:21
Last Modified: 23 Aug 2017 17:23
URI: http://irep.iium.edu.my/id/eprint/46968

Actions (login required)

View Item View Item


Downloads per month over past year