IIUM Repository

Porous alumina–hydroxyapatite composites through protein foaming–consolidation method

Sopyan, Iis and Fadli, Ahmad and Mel, Maizirwan (2012) Porous alumina–hydroxyapatite composites through protein foaming–consolidation method. Journal of the Mechanical Behavior of Biomedical Materials, 8. pp. 86-98. ISSN 1751-6161

[img] PDF (Porous alumina–hydroxyapatite composites) - Published Version
Restricted to Repository staff only

Download (3MB) | Request a copy


This report presents physical characterization and cell culture test of porous alumina–hydroxyapatite (HA) composites fabricated through protein foaming–consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200–1550 °C for 2 h. Porous alumina–HA bodies with 26–77 vol.% shrinkage, 46%–52% porosity and 0.1–6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol–gel derived HA. Biocompatibility study of porous alumina–HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8–120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h−1 and increased to 0.019 h−1 for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h−1 for 1.0 w/w ratio.

Item Type: Article (Journal)
Additional Information: 4809/21456
Uncontrolled Keywords: Hydroxyapatite; Alumina; Porous composites; Protein foaming–consolidation; Mechanical properties; Compressive strength; Cell culture
Subjects: T Technology > TS Manufactures
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Biotechnology Engineering
Kulliyyah of Engineering > Department of Manufacturing and Materials Engineering
Depositing User: PROF. DR. IIS SOPYAN
Date Deposited: 05 Mar 2012 14:25
Last Modified: 03 Apr 2012 15:36
URI: http://irep.iium.edu.my/id/eprint/21456

Actions (login required)

View Item View Item


Downloads per month over past year