IIUM Repository

Electrochemically exfoliated functionalized graphene flakes: facile synthesis, 3rd order optical nonlinearity and optical limiting response

Abu Bakar, Mohamad Aizat and Danial, Wan Hazman and Norhisham, Noriliya Aina and Abdul Majid, Zaiton and Ibrahim, Abdul Razak and Mat Jafri, Mohd Zubir and Ahmad, Fauzan and Abdullah, Mundzir (2022) Electrochemically exfoliated functionalized graphene flakes: facile synthesis, 3rd order optical nonlinearity and optical limiting response. Optics & Laser Technology, 151. pp. 1-8. ISSN 0030-3992

PDF (SCOPUS) - Supplemental Material
Download (289kB) | Preview
[img] PDF (Article) - Published Version
Restricted to Repository staff only

Download (3MB) | Request a copy


High quality graphene production is prerequisite for good performance in nonlinear optics application such as fast optical communications, all-optical switching, and optical limiting. Graphene journey begins with the method of synthesizing graphene which need to be simple, fast, and environmentally friendly. Hence, we introduce the method by exfoliating graphite by electrochemical route to produce good quality functionalized graphene for various nonlinear optics application. In this work, functionalized graphene flakes are synthesis by using two different electrodes; furnaced graphite rod (Gr-FG) and non-furnaced graphite electrode (Gr-NFG). Visual inspection on the synthesized Gr-FG and Gr-NFG show dark murky color solutions give the impression of high yield functionalized graphene flakes. Further observation under transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV–vis and Raman analysis confirm the good quality functionalized graphene structure. The nonlinear optical behavior of the functionalized graphene was accessed via Z-scan technique with 637 nm laser source operating in continuous mode with simultaneous monitoring of the close and open aperture signal. Close aperture profile of Gr-FG and Gr-NFG display nonlinear refraction, whereas open aperture profile shows reverse saturable absorption (RSA). Equation fitting reveals higher n2 magnitude for Gr-FG compared to Gr-NFG, but the later possess higher magnitude of β. Further analysis on the 3rd order of optical nonlinearity by z-scan technique reveal the admirable value at the range of 10−6 esu. Optical limiting performance conducted via transmittance-based measurement shows superior limiting of Gr-NFG compared to Gr-FG.

Item Type: Article (Journal)
Additional Information: 8124/97280
Uncontrolled Keywords: Reverse saturable absorption; Electrolysis; Z-scan; Functionalized graphene flakes
Subjects: Q Science > QC Physics
Q Science > QD Chemistry
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Science > Department of Chemistry
Kulliyyah of Science
Depositing User: Dr Wan Hazman Danial
Date Deposited: 21 Mar 2022 11:55
Last Modified: 21 Mar 2022 11:55
URI: http://irep.iium.edu.my/id/eprint/97280

Actions (login required)

View Item View Item


Downloads per month over past year