Budalal, Asma Ali and Shayea, Ibraheem and Islam, Md. Rafiqul and Azmi, Marwan Hadri and Mohamad, Hafizal and Saad, Sawsan Ali and Daradkeh, Yousef Ibrahim (2022) Millimetre-wave propagation channel based on NYUSIM channel model with consideration of rain fade in tropical climates. IEEE Access. pp. 1-17. E-ISSN 2169-3536
PDF
- Supplemental Material
Restricted to Repository staff only Download (648kB) | Request a copy |
|
PDF
- Supplemental Material
Restricted to Repository staff only Download (166kB) | Request a copy |
|
PDF (In press)
- Accepted Version
Restricted to Repository staff only Download (1MB) | Request a copy |
|
PDF
- Published Version
Restricted to Repository staff only Download (1MB) | Request a copy |
|
PDF (Scopus)
- Supplemental Material
Restricted to Repository staff only Download (800kB) | Request a copy |
Abstract
The impact of atmospheric attenuation on wireless communication links is much more severe and complicated in tropical regions. That is due to the extreme temperatures, intense humidity, foliage and higher precipitation rain rates with large raindrop sizes. This paper investigates the propagation of the mmwaves at the 38 GHz link based on real measurement data collected from outdoor microcellular systems in Malaysia. The rainfall rate and received signal level have been measured simultaneously in 1-minute time intervals over a 300 m path length for one year. The rain attenuation distributions at different percentages of exceedance time have been compared with the modified distance factor of the ITU-R P.530-17 model. The average link availability calculated with the measured rain rates has been analysed. Additionally, the key propagation channel parameters such as the path loss, path loss exponent, Rician K-factor, root mean square, delay spread and received power have been investigated considering the rain attenuation. These propagation channel parameters have been analysed using MATLAB software and explained with the help of the latest NYUSIM channel model software package (Version 2.0). The analysis results have been classified considering rain attenuation, antenna setup, link distances, antenna height and antenna gain. The outcomes revealed that the rain fade predicted by applying the modified distance factor provides high consistency with the measured fade in Malaysia and several available measurements from different locations. The percentage of path loss in the directional antenna was higher by approximately 35% than the omnidirectional antenna by considering the rain attenuation effects on the 300m path length in the Line-of-sight scenario. This work shows that the NYUSIM channel model offers more accurate rendering results of path loss for omnidirectional and directional antenna transmissions without rain fade. This study proves that the ability to provide good coverage and ultra-reliable communication for outdoor and outdoor-to-indoor applications during rain in tropical regions must be sufficiently addressed.
Item Type: | Article (Journal) |
---|---|
Uncontrolled Keywords: | Millimetre-wave, propagation channel, large-scale parameters, distance factor of the ITU-R P.530-17 model, NYUSIM channel model, Rain Fade, tropical regions |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101 Telecommunication. Including telegraphy, radio, radar, television |
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): | Kulliyyah of Engineering Kulliyyah of Engineering > Department of Electrical and Computer Engineering |
Depositing User: | Dr. Md. Rafiqul Islam |
Date Deposited: | 03 Jan 2022 09:16 |
Last Modified: | 21 Mar 2022 10:37 |
URI: | http://irep.iium.edu.my/id/eprint/95207 |
Actions (login required)
View Item |