IIUM Repository

Optimization of zinc electrodeposition from zinc-air cell discharge performance

Nor Hairin, Assayidatul Laila and Hens, Saputra and Ani, Mohd Hanafi and Othman, Raihan (2010) Optimization of zinc electrodeposition from zinc-air cell discharge performance. In: 3rd International Conference on Functional Materials and Devices 2010, 13-17 June 2010, Kuala Terengganu, Terengganu, Malaysia. (Unpublished)

[img]
Preview
PDF (Paper Abstract) - Supplemental Material
Download (90kB) | Preview

Abstract

Porous zinc electrodes were prepared from an acidic, chloride electrolytic bath for application in zinc-air microbattery. The aim is to produce a high specific surface area zinc coating in order to obtain high storage capacity and high limiting current density of the microbattery. The electrolytic bath consists of zinc chloride as the metal source and ammonium chloride as the supporting electrolyte. The concentration of the supporting electrolyte was varied from 1 to 6 M, while the concentration of zinc chloride was fixed at 2 M. The electrodeposition was performed at a constant current density of 100mAcm-2. No electrolyte agitation was attempted. SEM micrographs revealed unique cross-stitch porous network morphology of zinc electrodeposits. As the ammonium chloride concentration increases, flake microstructure appeared and later becomes predominant. A thin alkaline zinc-air cell was fabricated utilizing the various qualities of the zinc electrodeposits. The effect of the qualities of the zinc electrodeposits on the cell discharge performance was monitored. The zinc-air microbattery of 1 cm2 area x ca. 305 µm thick was able to produce a maximum limiting current density of 35 mA cm-2 and possessed a specific capacity of 327 mAh g-1

Item Type: Conference or Workshop Item (Lecture)
Additional Information: 4583/6713
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ807 Renewable energy sources
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2896 Production of electricity by direct energy conversion
T Technology > TP Chemical technology > TP250 Industrial electrochemistry
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering > Department of Science
Depositing User: Raihan Othman
Date Deposited: 19 Dec 2011 13:57
Last Modified: 19 Dec 2011 13:57
URI: http://irep.iium.edu.my/id/eprint/6713

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year