IIUM Repository

In vitro cancer cell line classification using pattern recognition approach based on metabolite profiling

Jeffree, Amanina Iymia and Omar, Mohammad Iqbal and Hashim, Yumi Zuhanis Has-Yun and Zakaria, Ammar and Thriumani, Reena and Md Shakaff, Ali Yeon (2018) In vitro cancer cell line classification using pattern recognition approach based on metabolite profiling. Journal of Telecommunication, Electronic and Computer Engineering, 10 (1-16). pp. 63-17. ISSN 2180-1843 E-ISSN 2289-8131

[img] PDF - Published Version
Restricted to Registered users only

Download (464kB) | Request a copy
PDF (SCOPUS) - Supplemental Material
Download (57kB) | Preview


This study aims to evaluate the feasibility of metabolite profiling for the characterisation and discrimination volatile compounds using the pattern recognition from in vitro cancer cell lines, which are lung, breast and colon cancer together with the blank medium as a control group. This study implemented the A549 (lung), MCF7 (breast) and HCT116 (colon). Cells were harvested and maintained until they grow as monolayer adherent and reach confluence 70-90% before sampling. The volatiles profile from the targeted cell line was established using headspace solid phase microextraction coupled to gas chromatography-mass spectrometry (HSSPME/GCMS). Multivariate data analysis employed principal component analysis (PCA) to better visualise the subtle similarities and the differences among these data sets. A total of 116 volatile organic compounds were detected focused on a limited range of retention time from 3rd until 17th minutes, and 33 compounds were recognized as targeted compounds (peak area>1%). According to both results, the score and the loading plot explained 83% of the total variance. The volatiles compound has shown to be significantly distinguished among cancerous and control group based on metabolite profiling using pattern recognition approach.

Item Type: Article (Journal)
Additional Information: 3774/64762
Uncontrolled Keywords: GCMS; Headspace SPME; In Vitro Cell Line; Metabolite Profiling; Pattern Recognition;
Subjects: T Technology > TP Chemical technology > TP248.13 Biotechnology
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Engineering
Kulliyyah of Engineering > Department of Biotechnology Engineering
Date Deposited: 12 Jul 2018 16:21
Last Modified: 03 Oct 2018 10:26
URI: http://irep.iium.edu.my/id/eprint/64762

Actions (login required)

View Item View Item


Downloads per month over past year