IIUM Repository

Flaxseed (linum usitatissimum) ethanolic extract affects WNT signalling pathway-associated molecules; β-catenin and DKK1 expressions, during osteoblast differentiation of SHED

Mokhtar@Makhtar, Khairani Idah and Nordin, Nur Sazwi and Mustafa Al-Ahmad, Basma Ezzat and Lestari, Widya and Darnis, Deny Susanti and Thirumulu Ponnuraj, Kannan and Ahmad, Azlina and Arief Ichwan, Solachuddin Jauhari (2022) Flaxseed (linum usitatissimum) ethanolic extract affects WNT signalling pathway-associated molecules; β-catenin and DKK1 expressions, during osteoblast differentiation of SHED. In: The 13th INTERNATIONAL SYMPOSIUM OF HEALTH SCIENCES, 24th-25th August 2022, ONLINE. (Unpublished)

[img]
Preview
PDF - Supplemental Material
Download (4MB) | Preview

Abstract

WNT signalling is important in regulating developmental process including bone development. Additionally, WNT signalling also involves in lineage differentiation of mesenchymal stem cells (MSC), including osteogenic differentiation, through canonical WNT pathway. Flaxseed (linum usitatissimum) is a plant with many health benefits including promoting bone health. Our previous study demonstrated that Flaxseed ethanolic extract (FEE) reduced the osteoblast differentiation potential of stem cells from human exfoliated deciduous teeth (SHED), a type of MSC. Hence, we aimed to analyse the effect of FEE on WNT signalling pathway-associated molecules; β-catenin, and DKK1 expressions, during the osteoblast differentiation of SHED. SHED cultured in osteoblast induction media (OIM) was treated with FEE at 4 mg/ml. RNA extracted from cells cultured at day 7, 14 and 21 was subjected to reverse-transcriptase PCR for β-catenin, and DKK1 gene expression analysis. FEE at 4 mg/ml significantly reduced β-catenin and DKK1 expression of SHED at day 7 (0.5293 ± 0.01, 1.0792 ± 0.02 respectively, p < 0.01) but induced their expression at day 14 (0.7675 ± 0.05, 1.7176 ± 0.07 respectively, p < 0.01). The expression was later reduced at day 21 (0.2592 ± 0.01, 1.0653 ± 0.04 respectively, p < 0.01). Changes in the β-catenin, and DKK1 expressions levels at different time frame might explain how FEE reduced the osteoblast differentiation potential of SHED. Overall, FEE modulates the expressions of WNT signalling pathway-associated molecules: β-catenin, and DKK1, during the process of osteoblast differentiation of SHED which could possibly interrupt the process of osteogenesis in the current environment.

Item Type: Conference or Workshop Item (Poster)
Uncontrolled Keywords: Flaxseed ethanolic extract, SHED, β-catenin, DKK1, osteoblast differentiation.
Subjects: R Medicine > RK Dentistry
Kulliyyahs/Centres/Divisions/Institutes (Can select more than one option. Press CONTROL button): Kulliyyah of Dentistry > Department of Fundamental Dental and Medical Sciences
Depositing User: Assoc Prof Khairani Idah Mokhtar
Date Deposited: 14 Oct 2022 17:25
Last Modified: 14 Oct 2022 17:25
URI: http://irep.iium.edu.my/id/eprint/100410

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year