Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Copyright</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>PART 1: ELECTRO DISCHARGE MACHINING</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Tool Wear rate during Electrical Discharge Machining (EDM) with</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Eccentric Electrode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Wear Ratio and Work Surface Finish during Electrical Discharge</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Machining (EDM) with Eccentric Electrode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Role of Current, Voltage and Spark on-time on Electrode Material</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Migration during EDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahsan Ali Khan, Nurul Shima Mohd Noh</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>A Study on Material Removal Rate during EDM with Tantalum</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Carbide-Copper Compacted Electrode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mohd Faiz Bin Nazi Nadin</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>*Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mohd Faiz Bin Nazi Nadin</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Relationship between Machining Variables and Process Characteristics</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>during Wire EDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erny Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erny Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compact and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15 .. 77
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16 .. 83
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17 .. 89
Investigation of MRR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18 .. 95
Investigation of TWR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19 .. 101
Investigation of Chip Formation and Minimum Chip Thickness in
Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 .. 107
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 .. 113
Effect of Micro End Milling Tool Diameter on Minimum Chip
Thicknes
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 .. 119
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabtaht and Musah Jamal Alrefaie

Chapter 23 .. 124
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabtaht and Musah Jamal Alrefaie

Chapter 24 .. 130
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabtaht

Chapter 25 .. 136
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING .. 165

Chapter 30
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izamsawati Yusof
Chapter 10

Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes

Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohd Hambiyah
Faculty of Engineering – International Islamic University Malaysia
✉: aakhan@iium.edu.my

Keywords: EDM; Tantalum carbide; Copper; PM compacted electrode

Abstract. Features of tantalum carbide-copper powder compacted electrodes during EDM of mild steel have been studied. It was found that during EDM electrode wear increases with increase in current and spark on-time. Electrode wear is inversely proportional to spark off-time. Due to increase in off-time, energy density decreases that caused reduction of electrode wear. Interaction effects show that the influence of current and off-time is almost equal. However, interaction effect of spark on-time and off-time is significant.

Introduction

EDM is widely used in industries to make dies and molds with hard materials that cannot be machined with conventional techniques. As time going on, EDM users tried to find out other methods to replace the conventional tool electrode and they come out with alternative tooling such as powder metallurgy (PM) method of electrode fabrication which is more economic and faster to manufacture. Using PM compacted electrodes the quality work surface can be controlled and modified due to deposition of materials from the electrode. Thermal, electrical, mechanical and micro-structural properties of PM tool electrodes can be controlled effectively by the process variable such as compacting pressure and sintering temperature [1]. Harder layers on the workpiece surface can be beneficial in providing increased abrasion and corrosion resistance to the workpiece [2].

The present work focuses on the development of powder metallurgy compacted electrode for EDM. The types of powder used are tantalum carbide (TaC) and copper (Cu). Both of these materials are mixed and compressed together to produce an electrode which can be used for EDM known as green compacted electrode. This electrode was called as green compacted because it did not going through sintering process. The electrode has been used in EDM and there are three parameters need to vary which are current, on-time and off-time. The compacted electrode was glued to a solid copper piece in order to have its required length as shown in Fig.1.

![Fig.1: TaC/Cu green compacted electrode joined with a copper holder](image)

49