Table of Content

Chapter 1
Amorphous Coating of Iron Nickel Alloy
Page 1
Suryanto

Chapter 2
Characterization of Electroplated Nanocrystalline NiFe Alloy Films
Page 7
Yusrini Marita and Iskandar I. Yaacob

Chapter 3
Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution
Page 13
Suryanto

Chapter 4
Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation
Page 19
Muh Rafiq Mirza Julaihi, Asep Sofwan Faturohman Alqap and Iis Sopyan

Chapter 5
Dynamic Mechanical Analysis of Carbon Fibre Composites
Page 25
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 6
Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles
Page 31
Koay Mei Hye and Iskandar I. Yaacob

Chapter 7
Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ’ Precipitates
Page 37
Roslina Ismail and Iskandar I. Yaacob

Chapter 8
Effect of Sintering Temperature on Protein Foaming-consolidation Porous Alumina-tricalcium Phosphate Composites
Page 43
Ahmad Fadli and Iis Sopyan

Chapter 9
Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering
Page 49
Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana

Chapter 10
Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications
Page 55
Souad. A. Mohamad, A. K. Arof

Chapter 11
Electrodeposited CdS / CdTe Solar Cells
Page 61
Souad. A. Mohamad

Chapter 12
Fabrication of Biomass Pellet from Mesocarp Fiber
Page 65
Zahrin Halim and Nurshazana Mohamad

Chapter 13
Fabrication of Kenaf Sandwich Panel
Page 68
Siti Khadijah Abdul Rahman and Zahrin Halim
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application
: Study on the Effect of Drying Time
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application
: Study on the Effect of Sintering Temperature
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nano crystalline Tio2 Electrode Films for DSSCs
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method
Asep Sofwan Faturohman Alqap, Nur Ain Rakman, and Ils Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method
Asep Sofwan Faturohman Alqap, Ils Sopyan and Zuria Farhana Kusmaili

Chapter 25
Stress Analysis of Backend Metallization
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics
Agus Geter Edy Sutjipto and Muhyiddin Bin Budih@Udah
Chapter 27
Surface Quality of *Dipterocarpus* Spp under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafaiedah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scoby Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sujjipto, Sugrib Kumar Shaha

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Chapter 011

Electrodeposited CdS / CdTe Solar Cells

Souad. A. Mohamad
Faculty of Engineering – International Islamic University Malaysia
✉️: su3ad@iium.edu.my

Keywords: Electrodeposition, Cadmium Sulfide, Cadmium Telluride, Solar Cells, Single Junction.

Abstract. The formation steps necessary for producing high quality electrodeposited CdS / CdTe solar cells are described. The key step in this process involves the heat treatment of the as-deposited n-type CdTe layers at around 400 °C. The results of studies made on the structural, electrical and optical properties of the electrodeposited CdS, CdTe films are presented. CdS/CdTe hetero-junction solar cells with reasonable efficiency have been demonstrated using electrodeposition techniques.

Introduction
CdTe, with its near-ideal band gap and high optical absorption coefficients, is a promising compound semiconductor for low-cost thin film solar cell applications [1]. Polycrystalline thin films of CdTe have been successfully prepared by a variety of techniques such as vacuum evaporation [2, 3], sputtering [4], close-spaced vapor transport (or sublimation) [5, 6], screen printing [7], spraying [8], chemical vapor deposition [9] and electrodeposition [10, 11]. Although all the methods listed above can, under properly monitored growth conditions, produce single-phase CdTe films, so far the best solar cells have been obtained using films prepared by close spaced vapor transport (or sublimation), screen printing, chemical vapor deposition and electrodeposition techniques. These devices were all, Cd(Zn)S/p-CdTe-type hetero-junctions and they have demonstrated over 9% conversion efficiency. Recent reviews of thin film CdTe solar [12-14].

Electrodeposition is a very attractive method for thin film solar cell processing. It is a simple technique which lends itself to large-scale production. It does not require specialized expensive equipment. Material utilization in the electrodeposition technique is extremely good since plating takes place only on the substrate. Electrodeposition can produce high purity materials if special attention is paid to the purification of the plating solutions which can be achieved by pre-electrolysis.

In this chapter, we developing the electroplated CdTe thin film solar cells, especially the very promising CdS/CdTe hetero-junction structures. The work include a brief overview of the initial research which resulted in the development of the cathodic electrodeposition technique for CdTe and the demonstration of the first Schottky barrier solar cells made on this material. Also, the electrodeposition technique for CdS, thin films and the contacting