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This book presents a collection of studies related to Big Data (BD) and
Machine Learning (ML) in its various real-world applications. The
presentation starts with an introduction and overview of BD and ML. Not only
limited to marketing strategy, ML is also very affective in many areas, such as
heritage property, construction, water quality, classification, crime analysis,
dentistry, Covid-19 and healthcare. Different modelling techniques and
mechanisms are developed by the authors for a reliable and sustainable
prediction strategy based on BD. Besides that, a comprehensive analysis of
traditional and modern analysis is also discussed in this book. Based on the
experimental results from the chapters, it is observed that ML can generate
promising results and help the development of related areas. Hence, thissbook
covers the execution of BD and ML that brings beneficial in term of time, cost,
and quality.
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Preface

Big Data and Machine Learning are two focus areas of Data Science
and have become significantly influential as many organizations and
industries have been collecting and generating huge amounts of in-
house data and information.

The use of Big Data technology is becoming very significant
[hese days as recent smart devices are producing very large amounts
ol data at one time. The diversity of data formats and types has
l‘cglllted in manual and traditional data analysis is no more longer
being competent. These days, the use of advanced tool and software
In data analyzing is a necessity in any organization especially in
predicting the future trend and business.

. Big Data is use with Machine Learning applications in a
variety of areas such as policy, crime, healthcare, and pollution.
Machine Learning involves high level and complex algorithms
through hierarchical training and leamning processes. The
cupabilities of Machine Learning in analyzing massive unstructured
data are undeniable, making it a valuable tool to be utilized in
addressing problems i Big Data era.

In line with the Fourth Industrial Revolution, it is observed
(hat the evolution of Big Data and Machine Learning is increasingly
important. Due to that reason, this book highlights the trends and
msues related to Big Data and Machine Learning to expose the
current needs and challenges in various real-world applications.

Y usliza Yusoff

Sirina Sulaiman

School of Computing

Fuculty of Engineering
Universiti Teknologi Malaysia
2
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9.1 INTRODUCTION

Attificial intelligence (AI) is the general description given to
‘omputer systems that can perform tasks and mimic the requirement
0l human intelligence input (Pesapane er al, 2018). Machine
learning (ML), a subset of AI was described as an algorithm with
the ability to "learn" by identifying patterns in a large dataset (Rowe,
1019). ML programs can improve from experience automatically,
inlike traditional computer programming, where every step of the
fopram requires a written code (Mayo & Leung, 2018). The
0cess is similar to a human expert that can learn by repeated

Data and Machine Learning with Anndicotioge
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training (Hung et al., 2019). The quality of the output_ depends on
the quality of data used to train and validate .the'algonthm G;?\‘/[Nf’
2019). Additionally, deep learning (DI_J), which 1s a subset- 4] ' {
was inspired by the structure and function of tk‘ie humar_l brain ca ecl.
artificial neural network (ANN). ANN contains multiple layers o

the network that receives the output of the previous layer, computing

a task and sending it to another layer, and the structure is able o
teach itself by reviewing a large amount of d'ata (Mayo & Lel?j]%“i
2018). Convolutional neural network (CNN) is commonly a:fg ]1\;;\‘
in computer vision research. The difference between ANN an .
is that in CNN, only the last layer is fully connected, but in ANN,
each neuron is connected with the other (Kumar, 2017).

Most mathematical models were developed to find the
relationship between input data and output d_ata. Ho.we;cr, |
complex real-world phenomenon cannot be descrlb‘ed easily rn'm..nl
closed-form input-output relationship. Thus, ML 1s an automallil(
process to build a computational model of these complex
relationships (Bastanlar & Ozuysal, 2014). ‘ e

This chapter is organized by firstly presentmg p()tep[l:l‘ nlu
of ML in dentistry in Section 92 Sectu_)n 9.3 descrlt.m‘ |l 1-.
methodology for ML research wh}le Section 9.4 exp]{an.m‘. h;i
applications of ML in dentistry. Section 9.5_ discusses the()a;/all.ul &
ML products and studies in the field of dep‘ustry. S.ec‘uon. .6 (;. of
chapter provides the limitation and_ethlcal cons1derat.10‘n‘lu' i
research in dentistry, and finally Section 9.7 concludes the chapli

92 POTENTIAL USE OF ML IN DENTISTRY

Dental radiology is most benefited from the advancemcnl‘ i 1 \1! {lhl
to the digitization of radiological images in th_e cum—:nt. pI llt { n= tl ‘
digital images offer direct access and easily be l_“mﬁ luu' 1:.“
computer language (Hung el al., ‘2019). [ncmp_m.ﬂmy ;-
technology into a radiological service can help improve 1l
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radiologist's performance, reduce the time for interpretation, smooth
integration with current workflow, and be cost-effective for the
initial start (Mayo & Leung, 2018).

Uses of ML in dental radiology includes tooth classification,
segmentation, automated tooth numbering, radiographic landmark
identification, detection of osteoporosis, classification of cysts,
identification as well as measurement of alveolar bone resorption,
and detection of dental diseases (Hung et al., 2019). Other than that,
it could be used for prediction of medication-related osteonecrosis
of the jaw (MRONTI) (Chen ef al., 2020), age estimation (Bunyarit
et al., 2020; Mohammad et a/., 2021) and many more.

The number of available Oral and Maxillofacial Radiologists
specialists is very limited to interpret all radiographs taken in the
clinical practice. Thus, the development of ML algorithm for the
interpretation of radiographs can ease the burden of the radiologist.
However, the final interpretation still depends on the clinician as the

output from ML algorithm is not fully reliable for clinical practice
at the moment (Heo ef al., 2020).

9.3 METHODOLOGY FOR ML RESEARCH IN
DENTISTRY

9.3.1 Steps

The first step in developing ML technique is to gather a large
amount of training data and store it in a suitable, computable form.
Commonly, there is more than one computational model that can be
used for each problem. Each model depends on the quantity and
(uality of the training data and the complexity of the relationship of
the input-output data. This means that a researcher should try
multiple models to find the most suitable one (Bastanlar & Ozuysal,
2014).

The training dataset can be divided into supervised learning,
unsupervised learning, and reinforcement learning. Regarding
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supervised learning, one or more experts in the field (oral
radiologist) will label or annotate the training data. Unsupervised
Jearning means that the system will learn to reco gnize the unlabeled
data automatically. Reinforcement learning is commonly used in
gaming and robotics and learn from positive and negative feedback
(Heo et al., 2020). '

All of the collected patient data need to be anonymized, and
the data's representativeness needs to be validated, the area of *
interest will later be segmented, and the data will be annotated by

gflgalidation tests were described in the literature such as multiple
old cross Vglldz_ltlon, independent sample validation, or combi f
multiple validation methods (Hung ez al. 2019) ’ -
Calculatﬁr;oit}ﬁzr nn::thod ofi testing the algorithm performance is by
' mean, median and deviation of the measur
;(:I(}:;l/r)acayl,e Esll:)eccliﬁclty, po(sitive and negative predictive value fg)l;l\l}f/
V), under curve (AUC), mean difference and/o i
against th_e reference standard (Hung et al., 2019). Eaciz(glzela;llon
require different sets of tests to measure the performance gf tleg

1

the experts (Do et al., 2020).

Data labeling from the radiographic study can be done in two
methods: having an expert oI radiologist label each of the
radiographs or taken from the radiology report. Despite these two
methods have their own strengths and weaknesses, both were aimed
at having a ground truth to be used as a reference (Do et al., 2020).
Labeling by an expert is time-consuming and may lead to observer's
disagreement. Thus, having an acceptable intra and inter observers’
agreement is crucial to get an adequate ground truth (Heo et @
2020).

The data are then divided into training, validation, and tcsl
dataset after the labeling process is done. The parameter can be
altered during the training phase accordingly. The performance ol
the model can be assessed during the validation phase, and the besl
model can be chosen that suits the objective of the study. Then, (h
final assessment of the model can be evaluated during the test phaic
Clear division between validation and test data is needed, and (h
number of data needed for cach phase depends on the difficully ol
each task. Cross-validation can be used in a study with a small
dataset. However, some studies removed the validation phase, an
the data is divided only into training and test sets (Heo et al., 2020)

9.3.2 Test of Performance

Few methods are used to test the performance of a developed MI
algorithm. One method is by doing a validation test. Several ty[

T —— T S .

developed algorithm.

94  APPLICATIONS OF ML IN DENTISTRY

9.4.1 Classification, Detection and Segmentation

i\glsfhmehleaming _thr01_1gh CNN in dentistry can perform several
k! (s) gs;lc ha(slflasmﬁcatlon, detection, and segmentation on a dental
0 ap o ef al., 2020). Detection method 1
isolate and comparativel il STt
_ ‘ y have similar funda 1t
classification method. In the i e
( thod. segmentation method, the a
nterest can be identified and segmented from the radiogf"z?)h?cf

image- an example of thre : . .
Figure 9.1. p ¢ methods in caries detection presented in

Dental Caries 99.9%

.

A systematic review by Prados-Privado et al. (2020)

compiled seven studies of caries detection from dental radiograph
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based on classification, detection, and segmentation neural network
task.

9.4.2 TImproving the ML Data Quality

Several methods were used to increase the training data quality and
reduce the time of the training phase. Data augmentation, using a
pre-trained deep learning network such as GoogLeNet Inception
V3) or a pre-trained model of AlexNet Network can be used to
achieve these objectives (Chen ef al., 2020; Heo et al., 2020,
Mohammad et al., 2021).

Data augmentation is a commonly used method to boost the
capability of neural networks. It plays a crucial role when ground
truth data is deficient, and acquiring new images is not easy due (0
time or cost constrain. The image can be rotated, flipped, translated,
scaled, cropped, or sheared to increase the number of the available
image from one original medical image (Nalepa et al., 2019).

Tmage classification of medical images can be enhanced by
using a pre-trained network such as ImageNet. It is a non-medical
image of over 1.2 million scenery images that can be used to train
medical images. Shallower network AlexNet has higher accuracy ol
image classification when compared with deeper network VGGNc|
16, and both networks were trained with TmageNet (Alebiosu &
Muhammad, 2019). Utilizing AlexNet trained with ImageNct cin
improve the flow of training image classification in dental
radiographs, too (Mohammad et al., 2021).

9.4.3 Performance

The expected outcome for accuracy in clinical practice is 98 9%
(Hwang et al., 2019). The performance of each model is nol equnl
Recent models have shown improvement with score of at least V5%
for accuracy, specificity, and sensitivity. Thus, the models couldl b
used for clinical applications in the future (Hung ef al., 2019)
However, the dataset and performance from each rescarch confine
in-house, so comparing each result are not possible. A call Tor &
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publicly available, anonymi
2 ymized dataset t .
was suggested (Hwang et al, 2019). develop ML algorithm

9.5  CURRENT APPLICATIONS

9.5.1 Available Produects

Several products are available i
‘ : e in the market especially by st
]c)oi:lg%?;;f, by u(s,iu}[g the ML technology to aid the clini)cfziar}l,’ssvflrlc')t;‘gJ
. can detect pathologies from intraoral ' .
, panoramic, and
Egﬁ: bﬂffl:n‘i: z}o);rgi)ﬁ‘i;dttorgotgraphy (CBCT) images. Dentalxr.ai, also
: 0 detect, and classify individual :
detect caries, restorations I B
ct caries, , and apical pathosis, th
findings into a radio 1 ol S e
_ graphic report. Similar automated radi 1
- . 0
g:lelilpretfitlon can also .be seen in Denti.ai. These programsgf;ﬁ]ilzig
andc arllne e;lmlng.algorlthms to identify and classify tooth structures
pmb]egl pi 333?1%;? apd de\{elop a treatment plan for each specified
1 L st's mput 1s still needed to approve the
o
diagnosis and treatment plan specified by the software.p Sfl‘?liﬁg

CBCT radiographi i i ;
and Figaro 9%—3-3. phic report by Diagnocat is presented in Figure 9.2

* Diagnocat

Lhoose regiien h nterist

AR

Figure 9.2 CBCT Radiographic report interface by Diagnocat
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Cephalometric analysis is more widely used, gndotléz
technology is more matured. Software such as CephX dyl terral
Dental Al and Audax CephX can do the automate1 a -
cephalometry tracing effortles;ly and instantaneous .yd liin agl
machine learning algorithms. Radmgrz_lphlc software_from n :{1., a
giants like Newtom and Dentsply Slr'ona can be integrate the ;
CephX to get the automated tracing done. The aLgLomaXiq
cephalometry tracing is also available in the Planmeca Romexi

software.

%
{
i

Figure 9.3 Jaw, individual tooth and inferior alveolar nerve gunul (IAC)
segmentation by Diagnhocat from a raw CBCT data

9.5.2 Current ML Studies in Clinical Dentistry

A summary of current applications of studies of ML applications i

clinical dentistry presented in the Table 9.1.
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Table 9.1 Current applications of studies of ML applications in clinical

dentistry
Year Study Data type Detail
2021 Bayrakdar er Bitewing Caries detection and
al. radiograph segmentation
2021 Basaran ef al.  Panoramic Dental charting
radiograph
2021 Mohammad e  Panoramic Age estimation
al. radiograph
2021 Lee et al. Bitewing Caries detection
radiograph
2020 Kise ef al. Ultrasound Sjogren’s syndrome diagnosis
2020 Lee et al. CBCT Cyst diagnosis
2019 Ekert et al Panoramic Detection of apical lesion
radiograph
2019 Hiraiwa eral.  Panoramic Root morphology assessment
radiograph

9.6  LIMITATION AND ETHICAL CONSIDERATION

The ML study in dentistry is still considered on a small scale and
fragmented (Heo ez al., 2020). Large training datasets arc required
for the clinical application of ML (Hwang et al., 2019). The majority
of ML research in dentistry is using a small number of (he (raiming,
dataset. 90% of the studies are using less than 500 images, and many
studies are using around 50 to 100 images to develop he algonthm
(Hung et al., 2019). The trend of increasing the number of lraming
images is seen from 100 to 1000 images in the year 2018 (Hwang, ¢
al., 2019). The process of getting a large number of data annotaled
by an expert, i.e., an Oral and Maxillofacial Radiologist, is very
laborious (Heo et al., 2020). Several points discussed in Section
[.4.2 could be used to increase the number of training images when
the novel number of data is limited. ,

There are few limitations associated with ML. It can only
excel in one task, and dependent on the quality of the training data.
Supervised learning with the labeling of the ground truth by an
expert radiologist is time, cost, and resource-eonsuming, while
semi-supervised and unsupervised learning methods cannot achieve
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the same power (Noguerol et al., 2019). Ccillatziqrelltioptb;r‘ltget;‘l:
i ' ialti radiologis
Itiple academic specialties such as an oral
1cll:rlrca]ij clinic to get the data, and data scientists and _cor?pgteg
engineers are needed to produce a good ML model that suits clinica
lication (Chen et al., 2020). ‘ .
i A rrgulti-society joint statement by various 1rad1olf)g};Si ?n_d
medical physicist associations divided the ;thlcgl 1331:63 ;:ahics iﬁ
i ing i ies: ethics in data,
diology setting into three categories: e . :
;Ellgorithgryn and trained models, and ethics of practice (Geis ef al.,

=Ry Radiologists are responsible for using the collected data for

the greater good of the patients_. Bias should be_rpducf;cil ‘;(2) Ctil::
minimum level regarding the patient's gender, ethm(':lty, 3‘ o
economic factors. Due to the fact that the patient's r?h i0g lu]; (,1"
images can be used to develop a commercial prograll;x]l, e stis i
the images could increase tremendgusly. Thus, tde ?}cqe . ((u'

management of the data should be lined beforehand (Geis L

2019).

9.7 CONCLUSION

This chapter presented that there are many pote.nt.la‘l appléceillg::r. ]c'; i
ML in the field of dentistry. It_ can help c11n1c1‘e‘1ns u den by
automatically classifying, det.ectmg, and‘segmemmghfcmh |UH| 4
interest and providing diagnOS{s.fr.om a radlograp};at 211 hlgm,m e
accuracy, specificity, and sensitivity. How;ver, a 'ma tu_ ‘tmﬂ‘l”!
is still needed when we are dealing w1tl_1 a patient, espccrally
regarding the diagnosis and treatment planning.
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