

Ultrasound Biometry & Etal Growth Abnormalities

Assoc. Prof. Dato' Dr Hamizah Ismail Head Department of Obstetrics and Gynaecology, Kulliyyah of Medicine Head, MOG Conjoint Board

Still birth & Perinatal Death Rates in Malaysia

statista.com

Confidential Enquiries

- Most stillbirth were due to Intrauterine Growth Restriction (IUGR) or Fetal Growth Restriction (FGR)
- Associated with suboptimal care
- Potentially avoidable

approximately 5.4 stillbirths per one thousand

Epidemiological analysis:

Significant reduction can be achieved through antenatal detection of pregnancies at risk

Malaysia: perinatal mortality rates 2017 | Statistic

https://www.statista.com/statistics/641974/malaysia-perinatal-mortality-rates/

Still Birth Risk of FGR

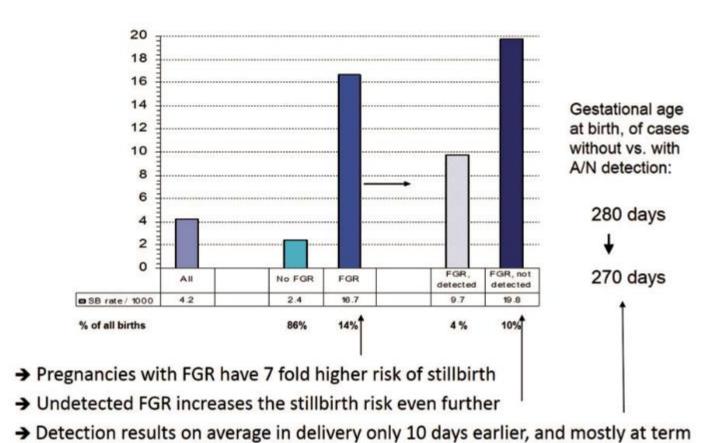


Figure 1. Stillbirth risk in pregnancies with and without antenatal (A/N) detection of fetal growth restriction (FGR), defined as < 10th customised centile. Illustration based on data in Gardosi et al.⁵

Fetal Growth and Perinatal Death

- Key components to reduce perinatal death :
 - Detect growth abnormalities (restriction / excessive growth)
- Methods of Prediction
 - Uterine Artery Doppler
- Methods of detection
 - Uterine enlargement Serial Symphysio-Fundal-Height (SFH)
 - Fetal growth Serial ultrasound Biometry
- Chart on Growth Chart
 - Which Chart that will not missed Growth Abnormalities

Ultrasound Biometry Appropriate Dating: Crown Rump Length (CRL) or LMP

- TAS 9⁺⁰ to 13⁺⁶ weeks from the first day of the LMP
- Gestational age by LMP
 - Regular menses 25-31 days
 - No hormonal contraception
 - No breastfeeding
- Gestational age by CRL
 - Gestational age based on CRL is within 7 days of that calculated by LMP for LMP to be reliable

INCORRECT:

The section is not mid-sagittal Magnification is poor

The section is not mid-sagittal
The fetus is flexed (not in a neutral position)
(It is also a twin pregnancy!)

The section is not mid-sagittal: You can see the spine in the middle - this is a coronal section

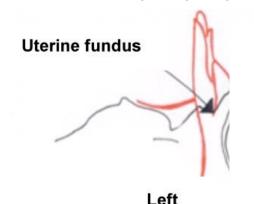
The inters and rump

Risk Assesment at Booking: Screening and Surveillance of Fetal Growth

GAP algo

Table 1. Prevalence of risk factors requiring serial ultrasound assessment of fetal growth according to new NHS England algorithm; West Midlands, N = 146,774

ь	.ow Risk ☐ No known risk factors
1	ncreased Risk: one or more of the following:
1	Maternal Risk Factors
1	☐ Maternal age >40 years
-	Smoker (any)
1	☐ Drug misuse
	Previous Pregnancy History
	Previous SGA baby (<10th cust. centile)
8	☐ Previous stillbirth
	Maternal Medical History
	☐ Chronic hypertension
r	☐ Diabetes
	Renal impairment
	☐ Antiphospholipid syndrome
	Insuitable for monitoring by fundal height- e.g.
т	☐ Large fibroids
ı	□ BMI>35
(Current Pregnancy Complications
ı	Early Pregnancy
[☐ PAPP-A <0.415 MoM
[☐ Fetal echogenic bowel
L	ate Pregnancy
	☐ Severe pregnancy induced hypertension
	or pre-eclampsia (=PIH and proteinuria)
[☐ Unexplained antepartum haemorrhage


Risk factor	Prevalence (%)	Cumulative (%)
Previous stillbirth	0.3	0.3
Previous SGA baby	6.3	6.5
Pre-existing hypertension	6.2	12.4
Pre-existing diabetes	0.7	13.1
Maternal age 40+	3.2	15.6
Body mass index 35+	8.1	21.8
Drug misuse	1.1	22.6
Smoker 10 + cigarettes/day	9.6	29.5
Smoker 1-9 cigarettes/day	8.7	36.2

Reproduced from Francis et al., 11 with permission. SGA: small for gestational age.

Figure 2. The growth assessment protocol (GAP) algorithm for fetal growth surveillance. Adapted from NEG England.

Fetal Growth: Clinical Biometry

Symphysis Fundal Height Measurement

Hand

_
Cı
Sta
me
- ta
m
Fu
eve
Ab
Fu
cus

Individual scan measurements plotted on

population charts

Referral to consultant

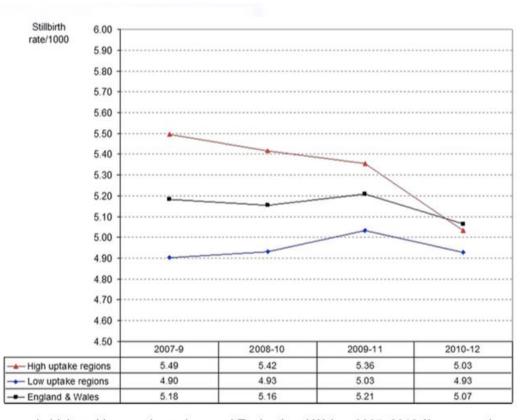
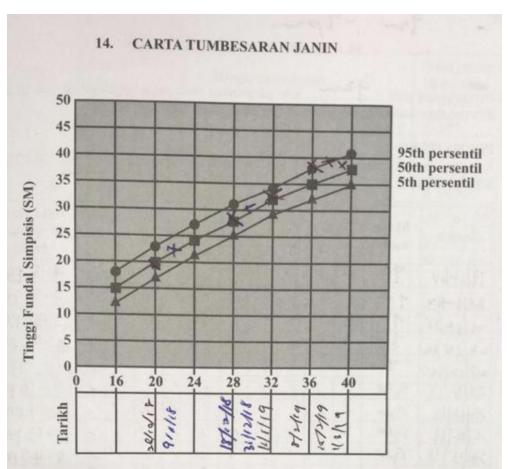


Figure 5 Stillbirth rates in high and low uptake regions and England and Wales, 2007–2012 (3-year moving average).

customised chart printed after the dating scan


Referral for scan or admission as a result

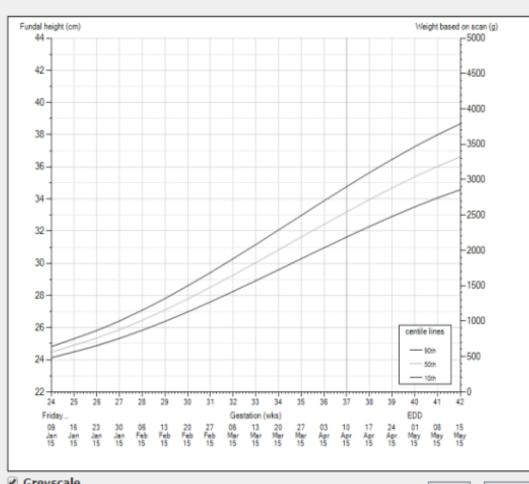
Referral for scan or admission as a result of referral guidelines

Direct referral for scan

Gardosi et I 2003

Antenatal Growth Chart

Serial fundal height measurements are recommended by NIH 2003


Populations standards
When use to assess fetal growth at 3rd
trimester will miss most SGA
Population standard grouped all
women together and predict they will
have the same size baby at term

Customised antenatal growth charts : recommended by RCOG 2003

Mother Ref. 123456 First Name Manjit Small Last Name Date of Birth 31/10/1988 Ethnic Origin 0 Indian Parity 0 Height 157 cm 5ft 2ins Weight 45 kg ▼ 7st 1lbs BMI () 18.3 Low TOW (g) 0 3042 EDD known 01/05/2015 Calculate EDD

Generate Chart

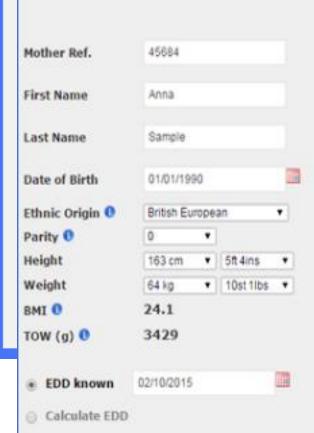
(a)

✓ Greyscale

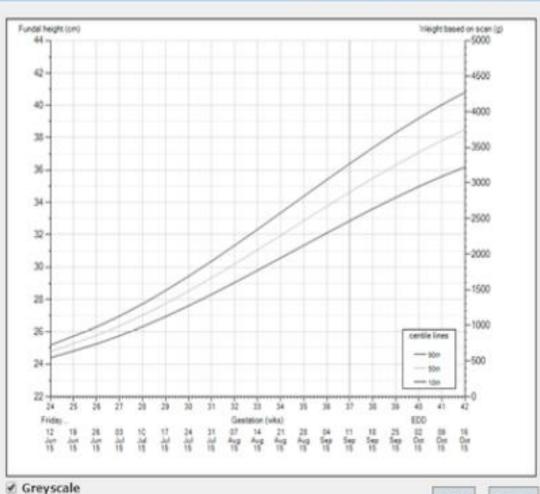
Show 5th/95th centiles

Gridlines by weight

Print

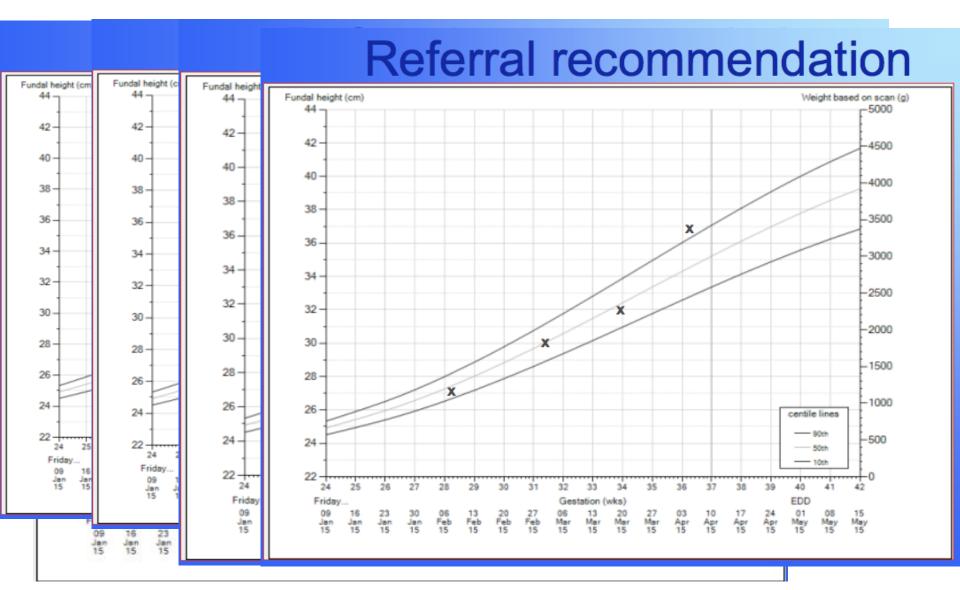

Clear

Helpdesk Hello, sue.turner Log off


Chart Centile Reports Help Users

Clear

Print


Generate Chart

Show 5th/95th centiles

Gridlines by weight

Antenatal Growth Chart

Antenatal Growth Chart

Table 1 - SGA Detection Rates*

	Population group n = 300	Customised group n = 298
SGA* n	62 (20.6%)	58 (19%)
Detected	10 (16.1%)	21 (36.2%)

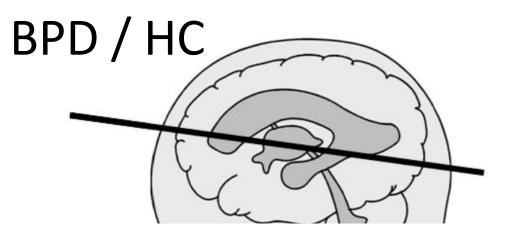
^{*&}lt;10th birth weight centile at delivery

Adherence to the referral guidelines may have led to antenatal detection of SGA in 12 additional cases i.e. 12 + 21 = 33 of 58 SGA could have been detected = 56.9%

Table 2 - LGA Detection Rates*

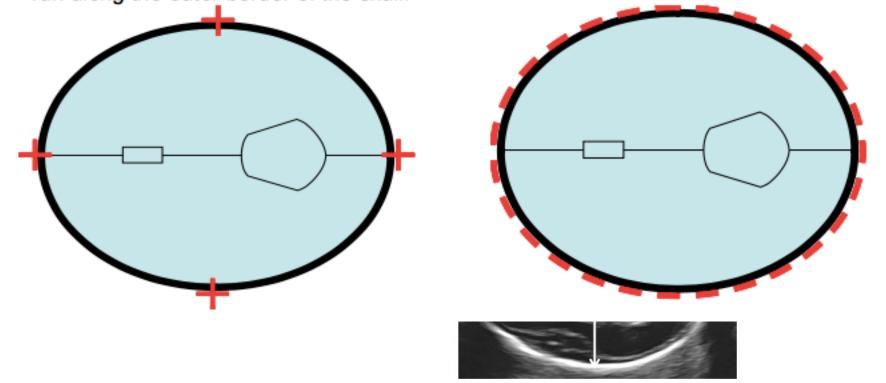
	Population group n = 300	Customised group n = 298
LGA* n	26 (8.6%)	17 (5.7%)
Detected	3 (11.5%)	9 (52.9%)

^{* &}gt; 90th birth weight centile at delivery

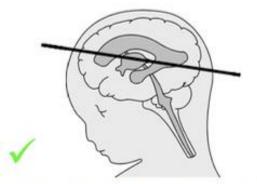

Adherence to the referral guidelines may have led to antenatal detection of LGA in 6 additional cases i.e. 9 + 6 of 17 LGA could have been detected = 88.2 %

Fetal Growth and Perinatal Death

- Key components to reduce perinatal death :
 - Detect growth abnormalities (restriction / excessive growth)
- Dating of Gestational Age
 - Crown Rump Length / LMP
- Methods of Prediction
 - Uterine Artery Doppler
- Methods of detection / identifying growth abnormalities
 - Uterine enlargement Serial Symphysio-Fundal-Height (SFH)
 - Fetal growth Serial ultrasound Biometry
- Chart on Growth Chart
 - Which Chart that will not missed Growth Abnormalities

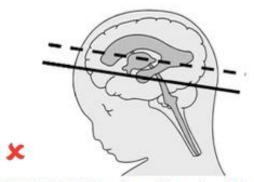

Identifying Fetal Growth: 2. Ultrasound Biometry

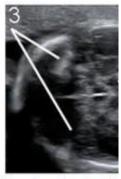
- Important clinical tool for :
 - Identification
 - Monitoring
 - Management of FGR/IUGR or Macrosomia
- CRL / BPD / HC / AC / FL

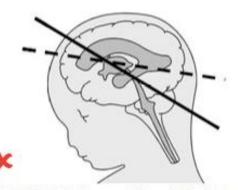


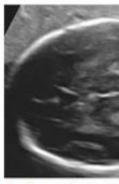
The level of the crosssection through the fetal head for correct measurement.

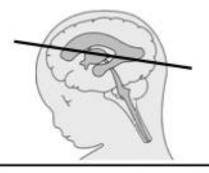
Callipers should be placed so that the intersection of the callipers is on the outer border of the bones ('OUTER TO OUTER'). When using the ellipse facility this should run along the outer border of the skull.



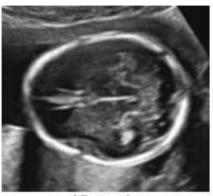

COMMON ERRORS:

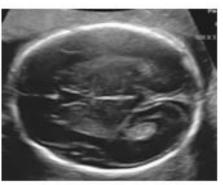



CORRECT: the main anatomic landmarks (1: thalami; 2: cavum sept are displayed.



INCORRECT: the wings of the sphenoid bone (3) and cerebral pedul demonstrated: this section is too low in the fetal head


INCORRECT: the cerebellum (5) is demonstrated: this section is obta suboccipitobregmatic plane and does not allow proper measurement occipitofrontal diameter.

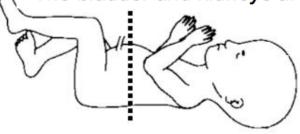

The main anatomic landmarks can be easily recognized between 14 weeks and term gestation.

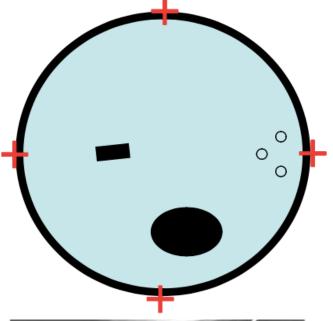
Remember:

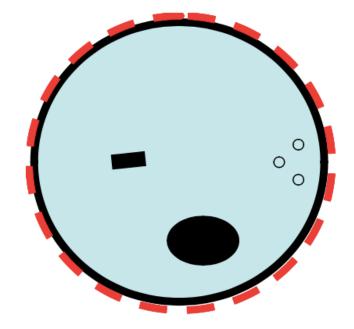
- ·Level of the thalami
- ·Horizontal plane
- ·Oval shape
- Symmetrical
- •Central position of falx cerebri
- Cavum septum pellucidum in anterior third
- Magnification
- Correct calliper placement

15 weeks

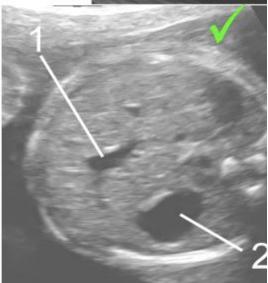
22 weeks


32 weeks


AC


- -The image is well magnified
- -The section is circular.
- -The landmarks are seen:
 - 1. Short segment of umbilical vein in the anterior third.
 - 2. Stomach bubble visible.
 - 3. Spine.
- The bladder and kidneys are not visible

The callipers are positioned correctly, outer to outer.


When using the ellipse facility this should run along the outer border of the abdomen.

COMMON ERRORS:

COMMON ERRORS:

CORRECT:

-There is a short segment of umbilical ve vein in the anterior third (1), and the stor is visible (2)

INCORRECT

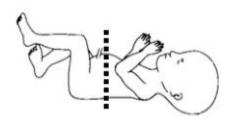
- The stomach is NOT visible
- The umbilical vein is NOT visible.

INCORRECT

The umbilical vein is:

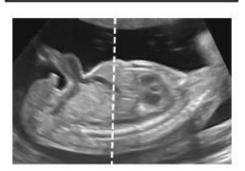
- not in the anterior third
- not a short segment

Like in the example above, the plane is too angled.


- Also, the stomach is not clearly visible

INCORRECT

- The magnification is very poor
- The umbilical vein may be correct but is not visible as the image is too small.

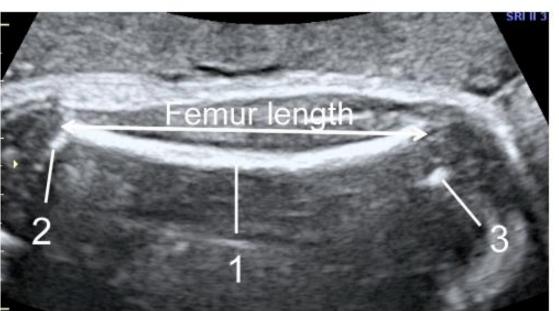


The main anatomic landmarks can be easily recognized between 14 weeks and term gestation.

Remember:

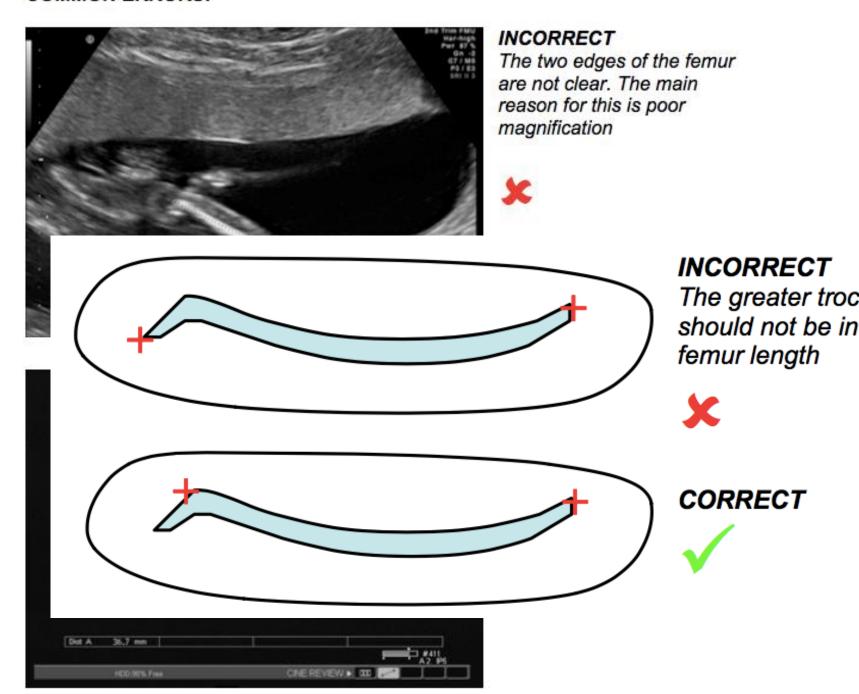
- · As circular as possible
- Short umbilical vein in anterior third
- · Stomach bubble visible
- Kidneys and bladder NOT visible
- Magnification
- · Correct calliper placement

14 weeks



22 weeks

40 weeks



In the second trimester only the ossified diaphysis (1) of the femur can be demonstrated; in the third trimester the greater trochanter (2) and distal ossification center (3) can be seen and this allows one to orientate the section plane better.

The greater trochanter should be avoided in measuring the femur length as this results in an excessive measurement (red X)

COMMON ERRORS:

SUMMARY:

The femur can be easily recognized between 14 weeks and term gestation

Remember:

Horizontal as possible

Measure the bone closest to the probe.

See the full length of the bone

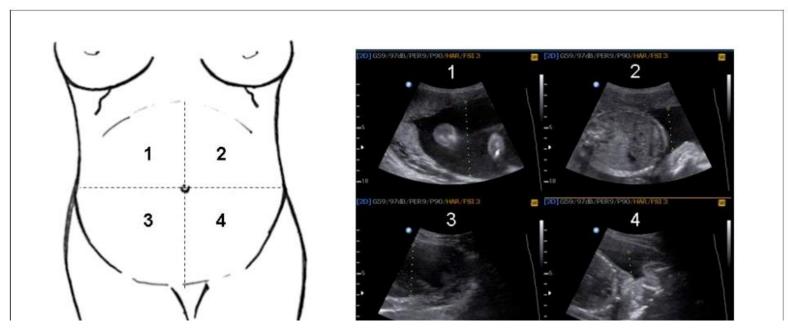
The bone is not obscured by shadows

Magnification

Correct calliper placement

Do not include greater trochanter

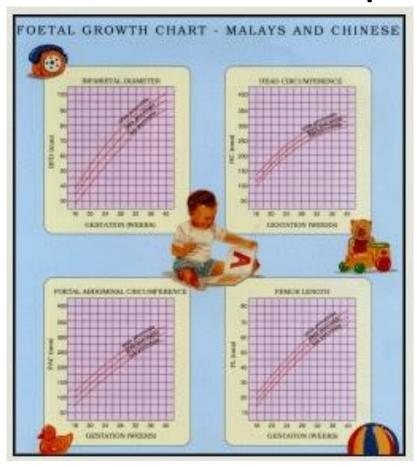
15 weeks

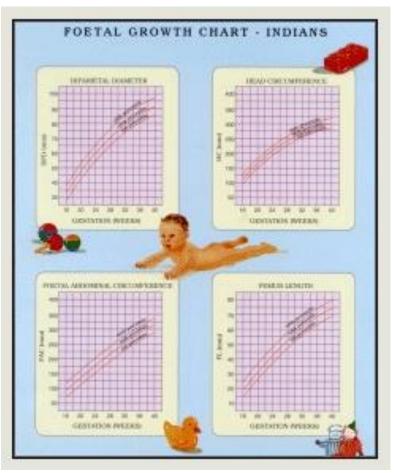

26 weeks

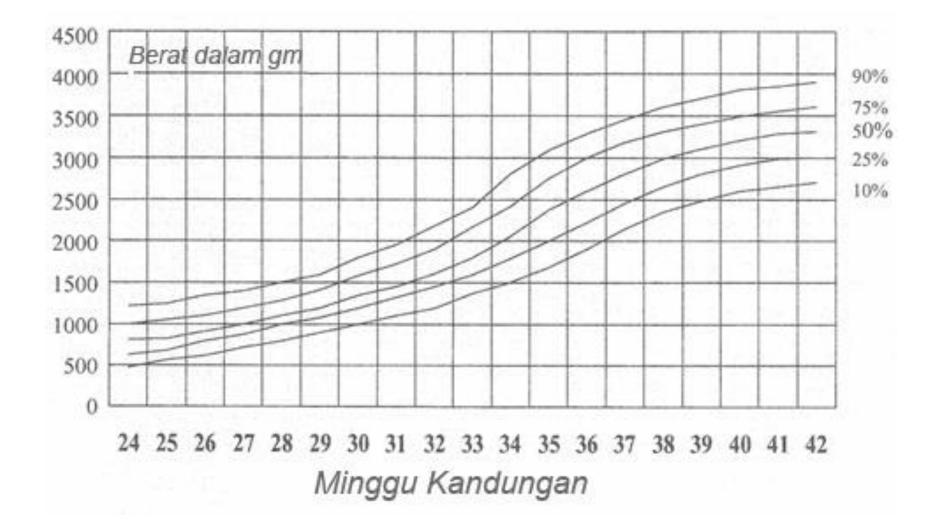
38 weeks

Amniotic Fluid Index

 Divide the uterus into 4 quadrants using the umbilicus as a reference (below 20 weeks the uterus is divided into 4 quadrants using the midline)




- Hold the probe LONGITUDINALLY to the mother
- Hold the probe at 90° to the floor
- Measure the deepest VERTICAL pool in each quadrant which contains no fetal parts or umbilical cord.
- Always measure the 4 quadrants in the sequence (1,2,3,4) shown above.


Which Growth Chart?

- Population Based Growth Chart
- WHO Growth Chart
- Intergrowth 21st Growth Chart
- Customised Growth Chart

Population Growth Chart – Malaysian Population

Selamat Datang Ke Portal Rasmi MyHEALTH Kementerian Kesihatan Malaysia

2. WHO Fetal Growth Chart

FIGURE 1

World Health Organization fetal growth chart: estimated fetal weight percentiles

1387 low = risk pregnant women

10 countries

Argentina, Brazil, Democratic Republic of Congo, Den

Thailand - Multipopulation

Participants

Median age 28 years, 58% nulliparous, norm (median caloric intake, 1840 calories/day)

populations

Median gestational age at birth was 3

Quantile regression that made post that were not well appreciated or un.

Asymmetric distribution of EFW,

Early second trimester, wider among fetuses <50th

Third trimester reversed

FIGURE 3

World Health Organian sex-specific growth percentiles for estimated fetal weight

,, France, Germany, India, Norway,

ocioeconomic or nutritional constraints and ultrasound sessions, essentially urban

23.3kg, - significant differences among country

nonstrate a number of features of fetal growth

International Fetal Growth Standards

International Fetal and Newborn Growth

Intergrowth 21st: Internationally applicable

One-size-fits all standard for birth-weight and fetal weight

8 countries

52171 – 20486 met standard (35 %)

18-35 years of age

Ht>153 cm

Non-smoker

No med history

No previous adverse outcome

No congenital abnormality

Low risk, well-nourished mother

Optimal standard for all pregnan

Unrepresentative rates of:

SGA (4.4%)

And poor correlation with outcome

LGA 20.6 %

CUSTOMISED GROWTH CHART

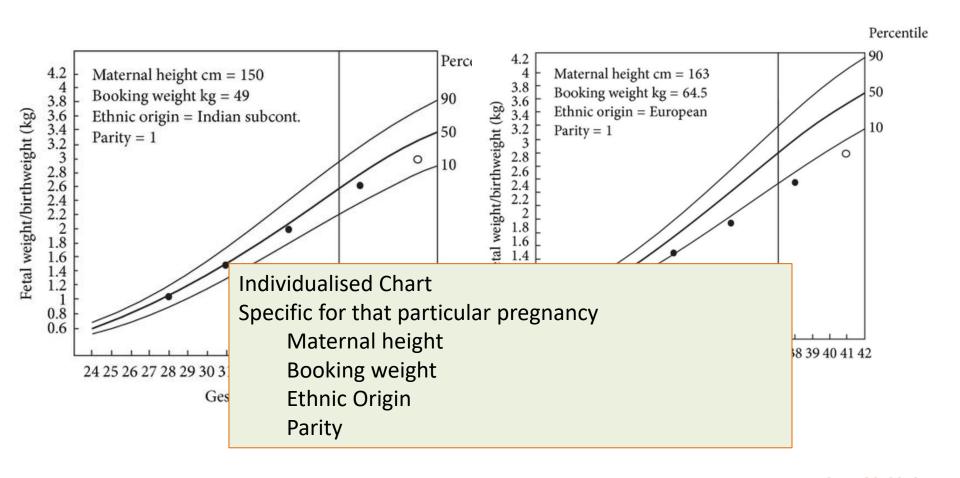
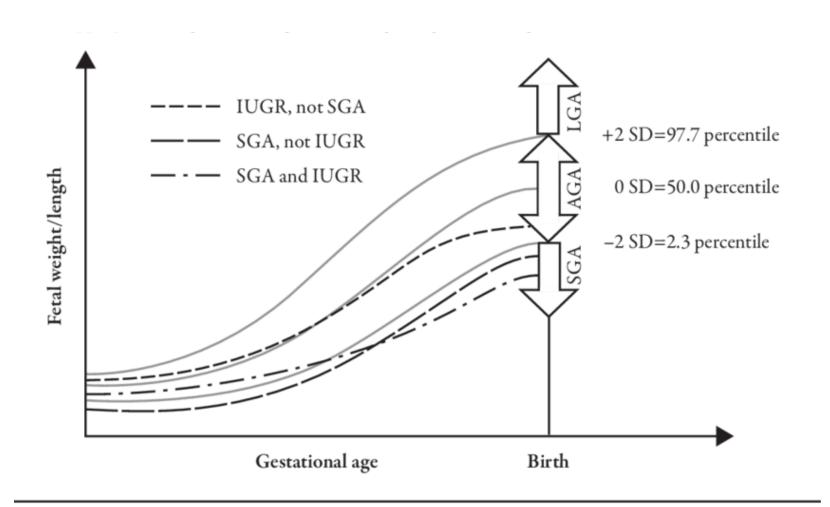
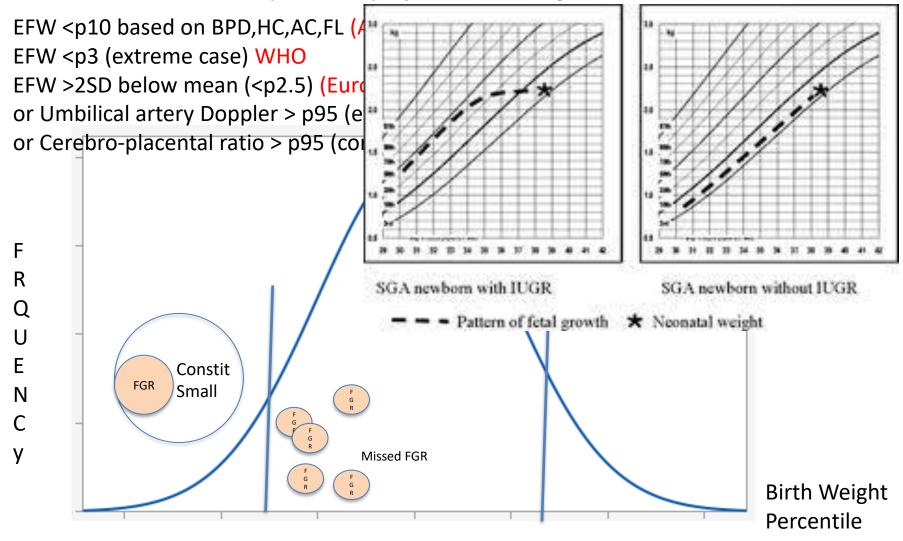



TABLE
Estimated fetal weight from relevant studies presented with 10th and 90th percentiles for selected gestational stages


	Gestational week				
Variable Variable	20	24	28	32	36
10th Percentile of estimated fetal weight (g)					
United States: white ^a	289	583	1045	1686	2432
Democratic Republic of Congo ^b	288	576	1023	1624	2310
World Health Organization ^c	286	576	1026	1635	2352
United States: black ^a	286	559	985	1579	226
Norway ^d	283	610	1102	1730	241
United States: Hispanic ^a	279	555	987	1595	229
United States: Asian ^a	275	546	978	1574	226
Intergrowth-21st ^e		602	951	1473	214
Oth Percentile of estimated fetal weight (g)					
Norway ^d	408	833	1472	2304	323
United States: white ^a	381	771	1391	2276	336
World Health Organization ^c	380	765	1368	2187	315
United States: Hispanic ^a	379	755	1353	2209	324
United States: black ^a	376	742	1317	2135	311
United States: Asian ^a	373	737	1318	2129	311
Democratic Republic of Congo ^b	345	700	1277	2083	303
Intergrowth-21st ^e		751	1276	2089	308

^a Buck Louis et al¹⁹; ^b Landis et al⁵⁹, ^c Kiserud et al¹⁶; ^d Johnsen et al²⁹, ^e Stirrnemann et al. ¹⁸ The World Health Organization study, the National Institute of Child Health and Human Development study from United States, the Intergrowth-21st study, a study from the Democratic Republic of Congo, and another from Norway are listed according to descending values at 20 weeks but are not formally compared or ranked. Modified from Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 2017;14:e1002220. With permission.

Kiserud. WHO fetal growth charts. Am J Obstet Gynecol 2018.

IUGR or FGR is defined prenatally by the following:

Abritrarily <10th percentile = **SGA (post-natal definition)**

Table 2 Ultrasound growth velocities (20–32 weeks, in mm/week) in the optimal appropriate-for-gestational- age (oAGA) and suboptimal appropriate-for-gestational-age group (sAGA)

	Optimal AGA (oAGA) group (n = 365) Bwp50-80	Suboptimal AGA (sAGA) group (n = 569) Bwp10-50	Р
Abdominal circumference velocity	11.23 ± 1.00(8.19-14.28)	10.72 ± 1.00(7.70-14.00)	<.0001
Head circumference velocity	10.68 ± 0.77 (8.54-13.51)	10.50 ± 0.80 (6.79-12.67)	0.001
Biparietal diameter velocity	3.08 ± 0.27(2.31-3.99)	3.01 ± 0.28(1.96-3.85)	<.0001
Femur length velocity	2.50 ± 0.22(1.89-3.01)	2.47 ± 0.21(1.54-3.08)	0.014

Data are expressed as mean ± standard deviation (min-max)

Table 3 Neonatal outcomes in the optimal appropriate-for-gestational-age (oAGA) and suboptimal appropriate-for-gestational-age (sAGA) group

/ | \

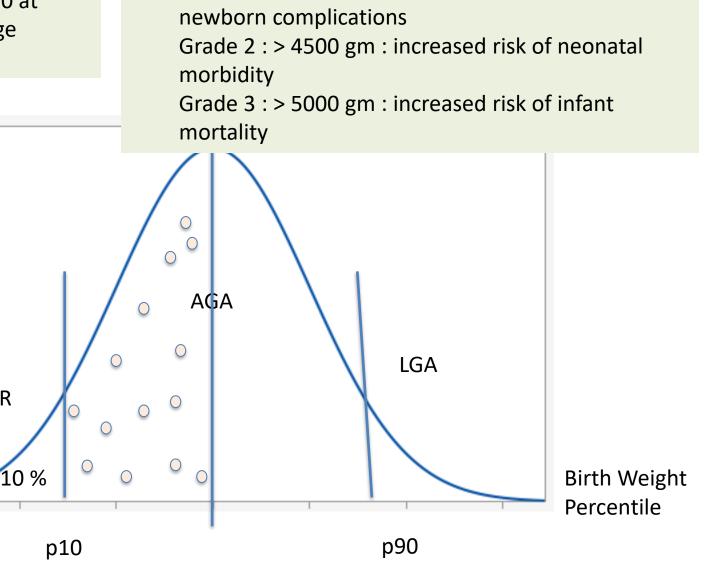
	Optimal AGA (oAGA) group ($n = 365$) Bwp50–80	Suboptimal AGA (sAGA) group ($n = 569$) Bwp10–50	Р	,
Composite adverse neonatal outcome	25 (6.8%)	37 (6.5%)	P= 0.919	1
Hypoglycemia	23 (6.3%)	52 (9.1%)	P = 0.139	
NICU stay (yes/no)	26 (7.1%)	35 (6.2%)	<i>P</i> = 0.588	
Hospital stay (yes/no)	145 (39.7%)	226 (39.7%)	<i>P</i> = 0.998	
Metabolic acidosis	14 (5.2%)	29 (6.5%)	<i>P</i> = 0.520	
APGAR 5 min < =5	5 (1.4%)	6 (1.1%)	<i>P</i> = 0.759	
APGAR 5 min <=3	0 (0%)	2 (0.6%)	P = 0.523	

Data are expressed as n (%). Composite adverse neonatal outcome: asphyxia, sepsis, respiratory distress syndrome and transient tachypnoea of the newborn. NICU, neonatal intensive care unit. Metabolic acidosis, blood pH < 7.0 and base deficit > 12 mmol/L

nt

LGA:
a birth weight ≥ p90 at given gestational age

IUGR / FGR

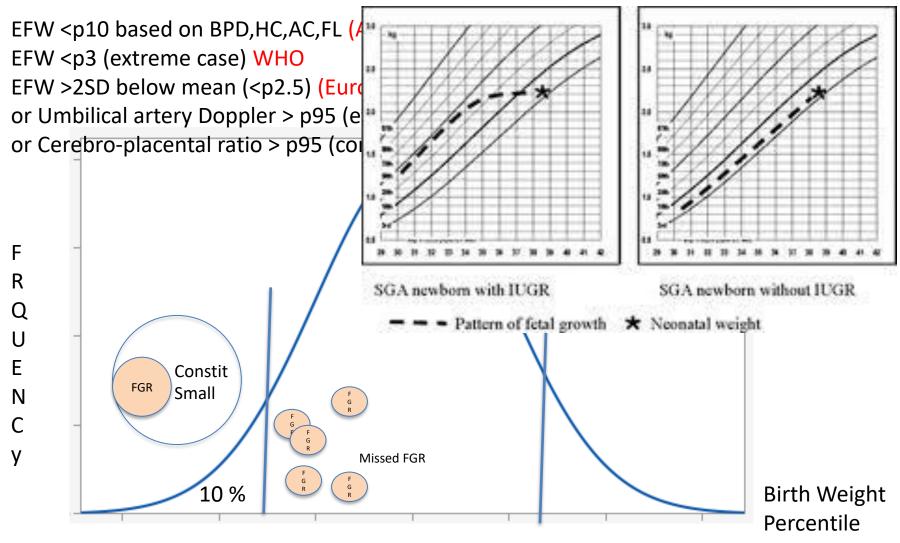

R

Q

Ε

Ν

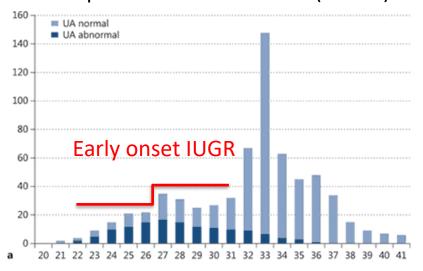
У

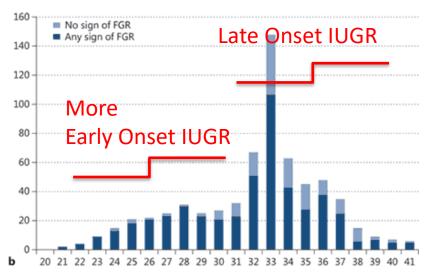


Macrosomia growth beyond a specific weight, 4,000

Grade 1 : > 4000 gm : increased risk of labor and

gram or 4,500 grams regardless of gestational age

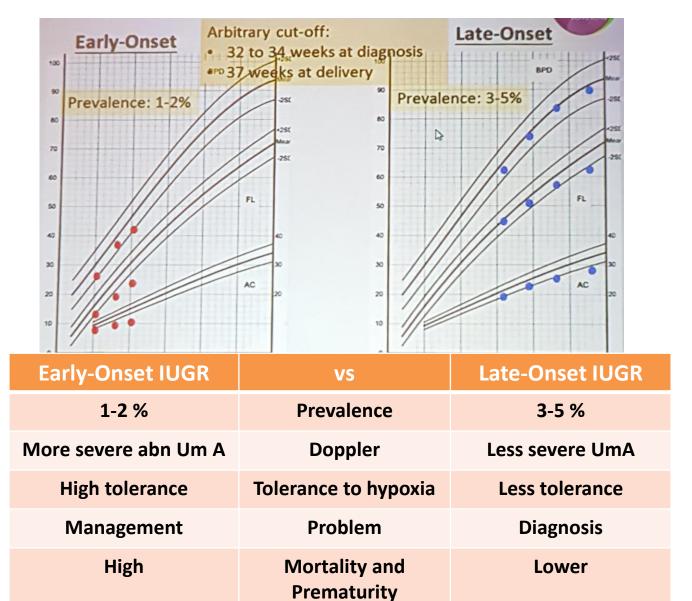

IUGR or FGR is defined prenatally by the following:

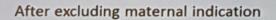


Abritrarily <10th percentile = SGA (post-natal definition)

IUGR/FGR: Prenatal Definition

Proportion of SGA Fetuses (n: 656) Diagnosed to be IUGR



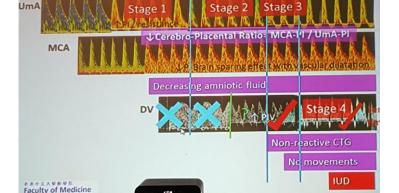

Defined by:
Umbilical artery Doppler >p95 alone

Defined by any of the following: Umbilical artery Dopper >p95 EFW <p3 Cerebroplacental ratio (CPR) >p95

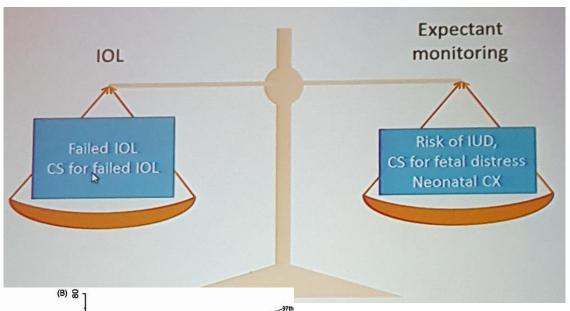
Early-onset vs Late-onset

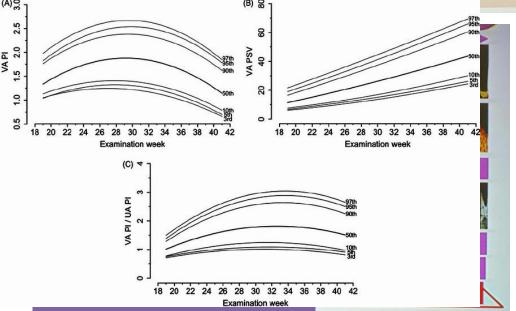
Early-onset IUGR

Give too early: waste the effect (within 7 days)


then risk of repeat steroids (reduced FG / increase Cerebral Palsy)

Give too late: not achieve minimal effects (at least 24 hrs) before delivery can be


scheduled or IUD occurs


FGR fetuses under long term stress, still need exogenous steroids? In TRUFFLE study, steroids were given > 90 % of cases in all 3 study group, according to the local centers' protocol: ie Cannot answer

NKS

Late-Onset IUGR

Delivery based on : MCA Doppler

Cerebro : Placenta Ratio CPR < 1 poor

perinatal outcome

Delivery at 37 weeks with increase UA-PI Delivery at 37-38 normal UA-PI but with

abnormal MCA

IOL but increase rates of EmCS

Turan et al Ultrasound Obstet Gynecol 2008 De-Vore, Am J. Obstet Gynecol, 2015

TAKE HOME MESSAGE

- Perinatal and Stillbirth still high as late detection of fetal growth abnormalities
- Accurate Dating is emphasized
- Appropriate Ultrasound Biometry Measurement
- The Right Growth Chart
 - Time to use Customised growth chart!
 - At least WHO growth chart
- Management of IUGR
 - Early-onset (Fetal Doppler) vs Late-onset IUGR (CPRatio <1)

Thank You