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ABSTRACT 

This paper aims to derive an expression for the damping derivative of an ogive in pitch. The Ogive shape is achieved 

by superposing an arch on the cone. The inertia levels considered are M = 5, 7, 9, 10, and 15. The contemporary theory 

applies to the connected shock case & the Mach M2 behind the shock M2 ≥ 2.5. Damping derivatives are examined for 

ogive for γ = 1.4 at various semi angles for differing pivot positions and Mach numbers and λ = ± 5, 10. Results 

indicate a continued decrease in stability derivatives. However, the damping derivatives turn independent of Mach M 

for Mach more than ten— with a surge in the cone angle, a continued rise in the damping derivatives attained. 
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INTRODUCTION 

There have been rapid developments in supersonic/hypersonic flow recently with the advent of supersonic/hypersonic 

missiles and aerospace vehicles. There is a need to develop a theory to compute the stability derivatives at these high 

speeds. In the absence of wind tunnel results, analytical computation of the stability derivatives serves as an efficient 

tool to optimize the design of the missiles and aircraft to reduce the number of experiments and costs. The present 

work aims to derive the expression for ogive at hypersonic Mach numbers. The Ogive shape is achieved by 

superposing an arch of λ= ± 5,  ± 10 for the cone surface. The ogival shape of the nose has numerous advantages over 

the conical nose shape. A single powerful shock wave for the entire nose length of the cone, and its strength will 

remain constant for the whole dimension of the nose. Whereas, in the case of the ogival nose shape, there is a 

continuous slope change; hence, all along the length of the nose resulting in Mach waves where the entropy of the 

flow will remain unchanged and will negligible loss in pressure energy. The ogive's packaging efficacy is maximum 

compared to a conical nose. It increases the payload capacity of aerospace vehicles.  Ghosh, K., [1] devised another 

hypersonic similitude for the attached shock case. The Mach after the shock must be more than 2.5 (i.e., M2 > 2.5). 

He ignored the impact of the Lee surface as the contribution from the Lee surface was negligible. He mainly focussed 

on the side accompanied by an oblique shock wave at the plate.  

They further stretched his work for cones and delta wings by Ghosh [1,2]. Khan and Crasta [3], Crasta et al. [4,5], 

Ayesha et al., [6-8] used Ghosh's theory of [1] and [2] to supersonic/hypersonic delta wings and cones. Renita et al. 

[9] study the effect of secondary wave reflections on wings at supersonic/hypersonic flow. Renita et al. [10] did a 

comparative study of quasi-steady and unsteady and computed stability derivatives for wings with curved leading 

edges. Wings with edges having curvature has some distinct benefits over straight leading edges. When the wing's 

leading edge is curved by superposing a half-sine wave, the wing area shifts significantly towards the trailing edge—

owing to the change over of the wing area downstream, resulting in a substantial rise in the stability derivatives of the 
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aerospace vehicles. Interestingly, the study of high-speed flow was limited to a slim body, and small angles of 

incidence are extended for high angles of attack. Khan et al. [11,12] studied using CFD to compute the flow around 

the two-dimensional wedge. Additonally, some studies has found that related to current work in which different 

theories was used to study the stability of delta wing [13-15]. 

METHODOLOGY 

From Figure 1, we get  
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Where     is the  angle delimited by  point A at 
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Sb = ogive cross-sectional area = ( )2tan cc , 

c = chord size. 

On resolving, we get, 

The expression for cone zero angles of incidence and pressure ratio after and before shock [2], with the connected 

shock with an ogive nose 
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poM   =  piston Mach, operating in a conical-annular area; boP  = ogive surface pressure. 

cpo MM sin=  

 c  = ogive angle 

Hence 
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On solving (3), we get 
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The formulae for Stiffness and damping derivative is obtained from the above  

 












−+−+++−+−

+−−−−−

+
+=

)}2431()12)32(2)32(9(){1(

)163(4)132(5

)1(15
][

22432222

42424

2

2

'

hhhnhnhnHhHnHHh

nnhnnh

n

a
CC conemm qq

  

Where 

  )31()2)2(3()1()132()2/(][ 24222424 hhnnhnHhHHhnnhDC conemq +++++−−−−=   


























++

+
=

podM

d
K

n
D




2

1

4

1
1

)1(3

2
2

 

( )21 nhH +−=  

And   cn tan=  

(7) 

 

Figure 1. Geometry 
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RESULTS AND DISCUSSIONS 

The expressions derived from the previous section generated data for damping derivatives in pitch. The results are 

plotted by varying Mach number, flow deflection angles, for different ogive arch, against the pivot parameter h. 

 

Figure 2. Cmq Vs. h, M = 5, λ = 5 

At the lowest Mach number of the present study (i.e., M = 5), the study's findings are presented in Figure 2 for cone 

angles 100 to 250 and the ogive arch λ = 5, at different pivot locations. It is realized that there is a rise in Cmq as the 

cone angle increases. This rise in the cone angles raises the wetted area of the ogive, and hence the growth is quite 

natural. Results also show a gradual decrease in damping as we move towards the trailing edge. A reversal in the 

trends occurs at h = 0.72, and reversal of the variable is ascribed to the pivot point's location and variation in surface 

pressure. The minima point of the damping derivatives moves downstream when the cone angle rises from 10 to 25 

degrees. 

 

Figure 3. Cmq Vs. h,  M = 7, λ = 5 
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Figure 3 shows outcomes of the study for a case where Mach is marginally enhanced to M = 7 from 5, keeping all the 

geometrical variables the same. The results show a negligible reduction in the amplitude of Cmq with an increase in 

the inertia levels. The decrease in Cmq is ascribed to the change of pressure intensity and its spreading on the surface 

of ogive. The reversal remained almost at the same point as at Mach M = 5. The minima point of stability derivatives 

remains unchanged due to a negligible rise in inertia levels and hence the pressure intensity over the ogive surface. 

 

Figure 4. Cmq Vs. h, M = 9, λ = 5 

An escalation of Mach from M = 7 to 9 shows similar outcomes in Figure 4 for the damping derivatives and reiterates 

that there will be a marginal decline in the damping derivatives. A minimal decrease in the value of Cmq is due to the 

rise in Mach values. Since the cone angles remained unchanged, the position of the normal force remained unchanged. 

In all these results, the magnitude of Cmq is at a peak for h = 0. Later downstream, there is a gradual decrease in their 

numerical values as the pitching point is shifted towards the trailing edge. 

 

 

Figure 5. Cmq Vs. h, M = 10, λ = 5 
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When Mach M = 10, the damping derivative in pitch is shown in Figure 5, holding all other geometrical constraints 

the same, inertia level M has risen M = 9 to 10, and outcomes reveal no augmentation in the numerical values of the 

stability derivatives at this Mach. An ongoing decline in the value of the damping derivatives with an increase of Mach 

numbers has vanished. This tendency can be attributed to the circumstance that when the Mach is raised to a specific 

threshold value, there may be no variations in the Cmq. Once this steady state is achieved in the stability derivatives, 

flow variables become independent of the Mach number, and we say that Mach number independence has occurred  

 

Figure 6. Cmq Vs. h, M = 15, λ = 5 

At the highest Mach number at M = 15, it is seen that there is no variation of Cmq at this Mach. The Mach numbers 

independence principle holds, which has already been achieved for  Mach ten. Hence the stability derivatives remain 

constant along with all its properties.  

 

Figure 7. Cmq Vs. h, M = 5, λ = -5 
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So far, the arch was either λ= 5 or 10, now, the upcoming damping derivatives results are for λ= -5 or -10 for the same 

range of inertia values, and geometrical parameters are shown in Fig.3 to 6. For λ= -5, a marginal rise in Cmq when 

cone angles range from 10 to 20 degrees An overall growth in Cmq for all theta values. However, a significant surge 

in Cmq is observed for cone angle equals twenty-five degrees. It may be due to the cone shape changes because of 

growth in the cone surface area. The trend reversal is shifted downstream at h = 0.8 for cone angle twenty-five degrees. 

However, the minima of Cmq remained in the range from h = 0.7 to 0.8. That shows that the aerospace vehicle will be 

more dynamically stable at the highest angle of twenty-five degrees. 

 

Figure 8. Cmq Vs. h, M = 7, λ = -5 

When Mach M = 7, Cmq Vs. Pivot position h is shown in Figure 8, and all other parameters are unchanged. Similar 

results are seen at Mach M = 7 with a marginal decline in the damping derivatives' values due to the growth of inertia 

levels. Once again, it is observed that the numerical values of Cmq remained nearly the same, and any rise in the cone 

angles does not show a significant change in the damping derivatives. However, when the cone angles are twenty and 

twenty-five degrees, it offers some fluctuations in Cmq owing to a considerable increase in the surface area. The minima 

have been shifted marginally in the direction of the flow. Alteration in the least of Cmq may be one of the positive at 

this Mach M = 7. Consequently, a change in the center of pressure will yield the most superior and effective results in 

aerospace vehicles' static and dynamic stability. 
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Figure 9. Cmq h, M = 9, λ = -5 

Here Mach is raised from M = 7 to 9, variations in the stability derivatives are presented in Figure 9 for cone angles 

from 10 to 25 degrees and λ= -5. A minimal reduction in the magnitude of Cmq when the inertia is high. A reversal in 

the trend remained around h = 0.8 at a single point. Owing to a rise of Mach from M = 7 to 9, this trend was expected 

as the inertia level has nearly reached a value that is likely to convert steady and self-regulating of Mach. As the center 

of pressure remained around h = 0.8, this configuration will continue to stay dynamically stable despite having smaller 

values of Cmq. Under these circumstances, the movement of the center of pressure is more prominent and yields larger 

values of damping derivatives, and can quickly compensate for a marginal decline in the damping derivatives. 

 

 

Figure 10. Cmq Vs. h, M = 10, λ = -5 

When Mach M = 10, Figure 10 displays the findings of stability derivatives for various cone angles from ten to twenty-

five degrees. Results show no change in the numerical values as the Mach number independent principle will hold at 

these Mach numbers. Once again, there is an appreciable change in the stability derivatives for cone angle 25 degrees. 
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From these results, we may say that one angle of 10 to 20 degrees is not desirable for the given parameters and should 

not be considered to finalize the dimensions of the aerospace vehicles. It is also realized that constant values of Cmq 

will not hamper the mission requirement. The center of pressure has shifted downstream, resulting in a substantial 

increase in the moment arm for Cmq, and the system becomes dynamically stable. 

 

 

Figure 11. Cmq Cmq Vs. h, M = 15, λ = -5 

Figure 11 shows results for the peak Mach M = 15 at λ = -5; as discussed earlier, aerodynamic derivatives have become 

independent of Mach number due to the Mach number autonomous condition. At this Mach, a marginal change in the 

center of pressure will be beneficial from the dynamic stability considerations. 

 

Figure 12. Cmq Vs. h, M = 5, λ = 10 

Figure 12 demonstrates a variation of Cmq Vs. non-dimensional pivot position h for Mach 5 and the most significant 

value of λ =  10. Because of the increase in the λ value, there is a substantial change in the shape and surface area of 

the ogive, significantly reducing the damping derivatives. The reversal in the pattern varies from h = 0.65 to 0.8. This 
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change in the reversal pattern is because of the shape change in the nose part of the cone. The outcomes show that 

even though a decline in the numerical value of the damping derivatives is seen. However, the contribution from the 

movement of the center of pressure is significant. The shift of pressure location will compensate for the losses incurred 

in the damping derivative. Finally, the aerospace vehicle remains dynamically stable. 

 

 

Figure 13. Cmq Vs. h, M = 7, λ = 10 

Outcomes of the present study when Mach M = 7 are presented in Figure 13, where all other variables remained 

similar except that the inertia level has augmented from M = 5 to 7. Due to an increase of Mach, there is a minimal 

decline in the damping derivatives. There is a marginal swing in the reversal pattern in the values towards the 

downstream. This rise in the value of the control reversal will enhance the pitching moment magnitude and render the 

system dynamically stable. 

 

 

Figure 14. Cmq Vs.  h, M = 9, λ = 10 
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At Mach M = 9, the outcomes of the present study are shown in Fig. 14. Meanwhile, the Mach has risen from 7 to 9, 

the stability derivatives have further decreased. The band of the pattern reversal, which was very large, is getting 

narrowed down and is limited between h = 0.65 to 0.75. A progressive rise of Cmq is due to the surge of cone angles. 

This increase remained maximum for the pivot position h = 0. The damping derivatives ' magnitude also declines 

when the pivot point moves downstream. 

 

Figure 15. Cmq Vs. h, M = 10, λ = 10 

Similar results are seen in Figure 15 when Mach number  M = 10; however, their numerical values are nearly constant 

as the Mach number is appreciably high. Any escalation of Mach does not influence the magnitude of Cmq. The causes 

for this tendency are the same as discussed before. 

 

Figure 16. Cmq Vs. h, M = 15, λ = 10 

At the Mach number of the present study M = 15, variation in the damping derivatives is shown in Figure 16 at λ= 10 

for different cone angles. Since inertia levels are high, any boost in the Mach M will not influence the damping 
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derivatives' magnitude because of the independence principle. There is a marginal swing in the position of the resultant 

force, which will be helpful when the dynamic stability is computed. 

 

Figure 17.  Cmq Vs. h, M = 5, λ = -10 

Figure 17 displays variations in the damping derivatives with various pivot positions at different cone angles when λ= 

-10. For this shape of the ogive, there is no definite pattern seen. Within h = 0 to 0.2, damping derivative takes higher 

values for cone angle = 10 degrees, later in the downstream of the cone from h = 0.3 till 0.8 damping derivatives 

assumes marginally higher values and reversal in the trends takes place at h = 0.85. Based on the above observation, 

this design may suit a single cone angle and not like other cases where the damping derivatives increase with the 

increase in the cone. The physics of this pattern can be understood when we do numerical simulations of the flow 

using a suitable turbulence model. 

 

Figure 18. Cmq Vs. h, M = 7, λ = -10 

Figure 18 shows similar results for an increased Mach M = 7. The figure shows a marginal decrement in the stability 

derivatives, and behavior shows a similar pattern as in the previous case for Mach M = 5 in Figure 17. 
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Figure 19. Cmq Vs. h, M = 9, λ = -10 

Figure 19 shows similar results for Mach M = 9 as seen in the previous two Mach numbers, namely M = 5 and 7. As 

the Mach number has increased considerably, any surge in Mach M will not generate any variation in the damping 

derivatives as the flow has reached a limiting level. All parameters will remain constant despite an increase in the 

inertia levels. The effect of cone angles also reveals similar trends, as was seen at smaller Mach M. 

 

Figure 20. Cmq Vs. h, M = 10, λ = -10 

Findings at Mach M = 10 are displayed in Figure 20, without changing all other parameters. Due to the high Mach 

number, we do not observe the impact of the growth of Mach on the magnitude of Cmq as the damping derivative has 

achieved a steady state. 
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Figure 21. Cmq Vs. h, M = 15, λ = -10 

Figure 21 displays the variation of Cmq pivot Vs. h at Mach M = 15, and λ = -10 for cone angle from 10 degrees to 25 

degrees. As discussed earlier, these combinations of the parameters are not helpful as marginal changes in the damping 

derivatives are observed. There is no significant change in the stability derivatives when we vary the cone angles and 

arch of the ogive. The trend reversal remains at h = 0.85. 

CONCLUSIONS 

Following the above discussion, the concluding remarks are as under: 

• Results show that the values of Cmq are maximum at Mach M = 5, and λ = 5, a constant decrease in the 

numerical values with the upsurge of Mach M = 5 to 9 and λ = 5 to 10. There is a shift of minima towards 

the downstream, which is advantageous from stability consideration. 

• With additional growth in Mach number, the flow parameters do not change despite the rise in Mach values 

due to the Mach number neutrality. 

• When we look at the findings for λ = -5 and -10, a considerable rise in the damping derivatives; however, the 

impact of cone angle variations on the damping derivatives is marginal except for 20 and 25 degrees. 

Nevertheless, considerable movement in the center of pressure location is beneficial and enhances the 

magnitude of damping derivative, resulting in a stable system. The pattern in the variation of the damping 

derivatives is similar to what was seen for the positive arch. 
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