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Abstract: The mechanical behavior of the rockfill materials (RFMs) used in a dam’s shell must be
evaluated for the safe and cost-effective design of embankment dams. However, the characterization
of RFMs with specific reference to shear strength is challenging and costly, as the materials may
contain particles larger than 500 mm in diameter. This study explores the potential of various kernel
function-based Gaussian process regression (GPR) models to predict the shear strength of RFMs.
A total of 165 datasets compiled from the literature were selected to train and test the proposed
models. Comparing the developed models based on the GPR method shows that the superlative
model was the Pearson universal kernel (PUK) model with an R-squared (R2) of 0.9806, a correlation
coefficient (r) of 0.9903, a mean absolute error (MAE) of 0.0646 MPa, a root mean square error (RMSE)
of 0.0965 MPa, a relative absolute error (RAE) of 13.0776%, and a root relative squared error (RRSE) of
14.6311% in the training phase, while it performed equally well in the testing phase, with R2 = 0.9455,
r = 0.9724, MAE = 0.1048 MPa, RMSE = 0.1443 MPa, RAE = 21.8554%, and RRSE = 23.6865%. The
prediction results of the GPR-PUK model are found to be more accurate and are in good agreement
with the actual shear strength of RFMs, thus verifying the feasibility and effectiveness of the model.

Keywords: shear strength; rockfill materials; Gaussian functions; polynomial kernel; radial basis
function; Pearson universal kernel

1. Introduction

In civil engineering projects, such as rockfill dams, slopes, and embankments, rockfill
materials (RFMs) are often used as filling materials. RFMs consist of coarse gravels, cobbles,
and boulders mined from rock quarries or riverbeds. Quarried materials are angular to
sub-angular, whereas riverbed materials are rounded to sub-rounded. Mineral composition,
particle size, shape, gradation, individual particle strength, void content, relative density,
and surface roughness of the particles all influence the behavior of the RFMs utilized in
the construction of rockfill dams. Several studies in geotechnical engineering have been
carried out, such as that examining the contact between the soils and concrete used in
earth and rockfill dams [1]. Inverse analysis provides an means to better understand dam

Materials 2022, 15, 1739. https://doi.org/10.3390/ma15051739 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15051739
https://doi.org/10.3390/ma15051739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1139-1831
https://orcid.org/0000-0003-2942-6614
https://orcid.org/0000-0001-8809-5283
https://orcid.org/0000-0003-3154-8207
https://orcid.org/0000-0002-6402-6184
https://doi.org/10.3390/ma15051739
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15051739?type=check_update&version=2


Materials 2022, 15, 1739 2 of 15

behavior [2], and offers measures of surface roughness, apparent porosity, apparent density,
water absorption, and uniaxial compression strength (UCS), as well as an understanding of
the influence of the heating rate and cooling process of gneiss stone [3].

RFMs are the preferred materials for the construction of high-embankment dams in
seismically vulnerable areas because they provide structural flexibility and considerably
reduce the issues caused by porewater pressure during and after construction. The me-
chanical behavior of the RFMs utilized in the dam’s shell must be evaluated. However,
because the materials may contain pieces larger than 500 mm in diameter, the character-
ization of RFMs with special reference to shear strength and deformation is challenging
and expensive.

A number of studies have been carried on RFM behavior. Marsal [4], Mirachi et al. [5],
Venkatachalam [6], Gupta [7], Abbas [8], and Honkanadavar and Sharma [9] conducted
laboratory experiments on different RFMs and found that the behavior of stress–strain
is nonlinear, inelastic, and dependent on the stress level. They also found that as the
maximum particle size for riverbed RFM increases, so does the angle of internal friction,
but quarry RFM shows the reverse trend. Frossard et al. [10] developed a logical method
for evaluating RFMs’ shear strength based on size effects. To associate the shear strength
parameter to some riverbed RFM index features, Honkanadavar and Gupta [11] developed
a power law. Due to the difficulty of performing large-scale strength tests and characterizing
the mechanical behavior of RFMs, different approaches for predicting their behavior have
been developed. In laboratory experiments, RFM with a large particle size (maximum
particle size of 1200 mm) was determined to be incompatible [11]. Large-scale shear tests
are time-consuming and difficult, and estimating the nonlinear shear strength function
without an analytical method is complicated.

In the recent past, machine learning (ML) algorithms have achieved notable suc-
cesses at efficiently solving real-world problems in different sectors, including civil and
environmental engineering [12], geotechnical engineering [13–18], and other fields of
science [19–26]. The artificial neural network (ANN) approach was found to be more effi-
cient in predicting the shear strength of RFMs [27]. Zhou et al. [28] has recently shown that
cubist and random forest regression algorithms are better at predicting RFM shear strength
results than ANN and traditional regression models. To predict RFMs’ shear strength,
Ahmad et al. [29] used support vector machine, random forest, adaptive boosting, and
k-nearest neighbor algorithms. This field, on the other hand, is still being researched and
further explored.

No prior study was found to simultaneously evaluate the effectiveness of a range of
kernel function-based Gaussian process regression (GPR) models. The goal of this research
is to evaluate and compare the efficacy of various kernel function-based GPR models based
on the results of reliable experimental tests of shear strength prediction modeling for rock
materials. The aims of this research include the following:

• To examine the capability of various kernel function-based GPR computing techniques,
namely, radial basis function kernel, polynomial kernel, and Pearson universal kernel,
in the area of predicting the shear strength of RFMs;

• To undertake a comparative study of the shear strength prediction of rockfill materials
and select the best outcomes provided by the developed GPR models based on the
performance metrics;

• To conduct sensitivity analyses to determine the effect of each input parameter on the
RFMs’ shear strength.

The remainder of the paper is organized as follows. In Section 2, the details of three
different types of kernel function-based GPR computing techniques for predicting the shear
strength of rockfill materials are presented. In Section 3, the details of the data catalog
and correlation analysis are presented. Performance evaluation measures are presented in
Section 4. Section 5 reports the developed models’ results. Based on the observations and
results of these models, Section 5 draws conclusions and future research directions.
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2. Gaussian Process Regression

Gaussian process regression (GPR) is a suitable and recently described method that
has been used in a variety of machine learning applications [30]. The GPR model’s prob-
abilistic solution leads to the identification of general kernel regression problems. The
applied regressor’s training process can be categorized as Bayesian, and the model relations
are assumed to follow a Gaussian distribution to encode the previous output function
information [31]. The Gaussian process is defined by a set of variables, each of which
has a joint Gaussian allocation [32]. Figure 1 illustrates the scheme of development of the
selected methodology.
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2.1. Radial Basis Function Kernel

The RBF kernel is a typical kernel function used in several machine learning algorithms
for kernel learning. It is widely used in vector machinery classification. RBF kernels are
typically a decent first option. Instead of the usual kernel, this kernel transfers samples
to higher-dimensional areas, allowing a nonlinear relationship between class labels and
attributes to be dealt with [33]. Furthermore, with the linear kernel and normalized poly
kernel, RBF is a unique situation because the linear kernel with a penalty parameter C
operates with the same parameters as the RBF kernel.

In comparison, kernel values can be used to calculate γXT
i + r > 1 for polynomial

kernels up to infinity as long as the grade is high [34]. Furthermore, under such parameters,
the sigmoid kernel is not true, i.e., it is not an internal two-vector product. The RBF kernel
is not appropriate in several cases. The linear kernel can be employed in particular when
the number of functions is quite large [35].
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2.2. Polynomial Kernel

The polynomial kernel (poly kernel) is a kernel function often used with support-
vector machines (SVMs) and other kernel-coded models that relate to parallel vectors
in the machine learning language. The polynomial kernel appears to achieve similarity
not only on the input samples’ stated functions, but also in their combinations. In the
context of regression analysis, such groupings were categorized as interaction features.
These groupings have been identified as interaction features in the context of regression
analysis. The enclosed polynomial kernel space is the same as a polynomial regression,
but it is an educated sum of parameters that does not include a combined blow-up. The
functionality links to logical function connections if the function data input are binary [36].
The polynomial kernel for degree polynomials is well-defined as

K(x, Y) =
(

xT , y + C
)d

(1)

where x and y are vectors in the input space, i.e., feature vectors found from training or
trial samples, and C ≥ 0 is an unconstrained parameter that trades off higher-order vs.
lower-order polynomial definitions. When C = 0, the kernel is said to be homogeneous.

2.3. Pearson Universal Kernel

The Pearson universal kernel (PUK) is a machine learning programming tool that aids
in the comprehensive interpretation and understanding of various data types. The Pearson
VII function is considered to have a general form for curve suitably, and is assumed by

f (x) = H/

[
1 + 2(x− x0)

√
2
(
( 1

ω−1)/δ
)2
]ω

(2)

where H is the top tallness at the middle x0 of the peak, and x represents the self-
determining variable. The parameters σ and ω regulate the half-width and the following
factor of the peak. A function ω, on the other hand, belongs to the class of effective kernel
functions. The kernel matrix might be symbolic and positively semi-definite; to show
that PUK is certainly resolving these situations, Uestuen [37] redrafted Equation (3) into a
function of both vectors:

K
(
xi, xj

)
=

1[
1 + ((2

√∣∣xi − xj
∣∣2√2(

1
ω ) − 1)/σ)

]2ω
(3)

3. Data Catalog and Correlation Analysis

The dataset collected from Kaunda [27] was separated into training (80 percent of total
data) and testing (20 percent of the remaining data) datasets for this investigation. The
database has been presented in Kaunda [27] in detail. Table 1 summarizes the 165-sample
dataset, which includes numerous shear strength of RFM tests, and the input and output
variables’ minimum (min), maximum (max), mean, and standard deviation (SD). As can
be seen in the table, the database includes input parameters, i.e., particle material size (or
sieve) gradation, fineness modulus, gradation modulus, material hardness, relative density,
and confining (normal) stress, and one output parameter, i.e., shear strength.

To choose the most resilient representation, a statistical study of input and output
variables of the training and testing data was performed (see Table 2). It was accomplished
through the use of a trial-and-error strategy. Previous studies show that the shear strength
(τ) of RFM is a function of D10, D30, D60, and D90, which correspond to the 10%, 30%, 60%,
and 90% passing sieve sizes, while UCSmin and UCSmax (MPa) indicate the minimum and
maximum uniaxial compressive strengths (MPa), the FM and GM parameters describe
fineness modulus and gradation modulus, respectively, γ is the dry unit weight (kN/m3),
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σn is the normal stress (MPa), and R shows the International Society of Rock Mechanics
(ISRM) hardness rating [27,29]. As a result, the current study’s GPR models are constructed
using these input variables.

Table 1. The inputs and output of the present study.

S.
No.

D10
(mm)

D30
(mm)

D60
(mm)

D90
(mm) CC CU GM FM R UCSmin

(MPa)
UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

1 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 20.8 1.142 0.93
2 0.44 1.5 6.99 27.5 0.73 15.89 3.82 5.16 4 50 100 18.7 0.159 0.189
3 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.344 0.357

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
163 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.044 0.025
164 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.115 0.191
165 0.4 2.3 12.2 44.4 1.08 30.5 3.3 5.69 4 50 100 18.7 0.794 0.577
Min 0.01 0.56 1.2 2.6 0.1 1.36 0.2 3 1 1 5 9.32 0.002 0.005
Max 33.9 42.4 80.1 100 22.27 1040 6 8.8 6 250 400 38.9 4.205 3.921
Mean 4.463 7.86 18.28 39.927 2.404 69.561 2.903 6.142 4.327 73.691 168.455 20.799 0.734 0.662
SD 8.875 10.335 14.42 22.432 3.414 193.628 1.278 1.298 0.957 37.975 87.844 4.861 0.785 0.652

Table 2. Statistics of parameters of the training and testing datasets.

Statistical
Parameter Dataset

Input Variable Output
Variable

D10
(mm)

D30
(mm)

D60
(mm)

D90
(mm) CC CU GM FM R UCSmin

(MPa)
UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa) τ (MPa)

Minimum Training 0.010 0.560 1.200 2.600 0.100 1.360 0.200 3.000 1.000 1.000 5.000 9.320 0.002 0.005
Testing 0.010 0.560 1.200 2.600 0.100 1.470 0.200 3.000 1.000 1.000 5.000 9.320 0.021 0.024

Maximum Training 33.900 42.400 80.100 100.000 22.270 1040.000 6.000 8.800 6.000 250.000 400.000 38.900 4.205 3.921
Testing 33.900 42.400 50.000 99.000 22.270 1040.000 6.000 8.800 5.000 100.000 250.000 38.900 3.223 2.492

Mean Training 4.867 8.465 19.287 40.386 2.199 53.324 2.788 6.250 4.364 75.045 170.682 20.766 0.729 0.660
Testing 2.887 5.442 14.252 38.091 3.226 134.510 3.365 5.709 4.182 68.273 159.545 20.932 0.756 0.668

Standard
deviation

Training 9.179 10.577 15.135 22.018 3.075 156.064 1.243 1.261 0.910 39.230 88.010 4.605 0.780 0.662
Testing 7.453 9.050 10.349 24.289 4.492 194.958 1.331 1.374 1.131 32.444 87.967 5.854 0.816 0.619

Understanding the relationship between each input and result can definitely facil-
itate the development of a proper prediction model. Among the numerous correlation
coefficients described thus far, the correlation coefficient technique has proven to be more
common. As stated in Equation (4), the correlation coefficient is equal to the product of
the covariance of two parameters divided by their standard deviation. ρm,n ≈ 1 represents
the high degree of interdependence between two variables, while ρm,n ≈ 0 stands for a
linear relationship between two variables m and n that are independent of one another. The
Pearson correlation coefficients for the variable inputs and the target output are reported in
Table 3.

ρ(m, n) =
cov(m, n)

σmσn
(4)

Obviously, the values provided in Table 3 reveal that σn and D90 have the most
significant influence on the τ, while FM, Cu, and UCSmax affect the output non-considerably.
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Table 3. Pearson correlation coefficients for variable inputs and the target output.

D10
(mm)

D30
(mm)

D60
(mm)

D90
(mm) Cc Cu GM FM R UCSmin

(MPa)
UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

D10 (mm) 1
D30 (mm) 0.972 1
D60 (mm) 0.652 0.802 1
D90 (mm) 0.304 0.451 0.758 1

Cc −0.203 −0.229 −0.251 −0.214 1
Cu −0.171 −0.207 −0.171 −0.032 0.567 1

GM −0.784 −0.866 −0.849 −0.686 0.345 0.267 1
FM 0.770 0.846 0.824 0.644 −0.357 −0.273 −0.959 1
R 0.297 0.357 0.457 0.304 −0.607 −0.176 −0.465 0.459 1

UCSmin
(MPa) 0.291 0.411 0.644 0.352 −0.358 −0.169 −0.444 0.428 0.838 1

UCSmax
(MPa) 0.376 0.443 0.536 0.254 −0.363 −0.193 −0.454 0.433 0.864 0.945 1

γ
(KN/m3)

−0.277 −0.237 −0.079 0.080 0.459 0.189 0.203 −0.305 −0.448 −0.227 −0.292 1

σn (MPa) −0.249 −0.154 0.146 0.413 −0.164 −0.069 −0.086 0.058 0.098 0.089 −0.034 0.195 1
τ (MPa) −0.238 −0.130 0.210 0.472 −0.187 −0.080 −0.118 0.092 0.150 0.156 0.030 0.185 0.966 1

4. Performance Evaluation Measures

The coefficient of determination (R2), Pearson’s correlation coefficient (r), mean abso-
lute error (MAE), root mean square error (RMSE), relative absolute error (RAE), and root
relative squared error (RRSE) are used to evaluate the data-driven modeling in this study.
These parameters can be calculated as follows:

R2 = 1−
∑n

i=1

(
yip − yio

)2

∑n
i=1(yio − yo)

2 (5)

r =
∑n

i=1

[(
yio − yp

)(
yio − yp

)]
√

∑n
i=1

(
yio − yp

)2
√

∑n
i=1

(
yio − yp

)2
(6)

MAE =
1
N ∑n

i=1

∣∣∣yio − yip

∣∣∣ (7)

RMSE =

√
1
N ∑n

i=1

(
yio − yip

)2
(8)

RAE =
∑n

i=1

∣∣∣yip − yio

∣∣∣
∑n

i=1|yio − yo|
(9)

RRSE =

√
∑n

i=1

(
yip − yio

)2

√
∑n

i=1(yio − yo)
2

(10)

where yio and yip represents the actual measurement and predicted shear strength of RFM,
respectively, yo is the average of the reference samples’ values, and n is the defined amount
of data.

The degree of collinearity between predicted and measured data is described by the
coefficient of determination (R2) and correlation coefficient (r). The correlation coefficient,
which varies from 1 to −1, is a measure of the degree to which observed and predicted
data are linearly related. There is no linear relationship if r = 0. A perfect positive or
negative linear relationship arises if r = 1 or −1. Similarly, R2 denotes the percentage of
variance in the measured data that the model can explain. R2 spans from 0 to 1, with
higher values suggesting less error variation, and values above 0.5 are usually regarded
as acceptable [38,39]. The MAE represents the average value of the predicted and actual
values. When the MAE is close to 0, the adjustment has a better effect, implying that the
prediction model more accurately describes the set of training data [40]. As a single measure
of predictive power, the RMSE is the average magnitudes of the errors in predictions for
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all observations. The RMSE is greater than or equal to 0, with 0 indicating a statistically
perfect fit for the observed data. The relative absolute error (RAE) is the difference between
expected and actual values that is calculated by dividing the mean difference by the
arithmetic mean. It ranges from 0 to infinite, with being 0 the best value. The RRSE criteria
measure the model’s percentage error, which ranges from 0 to 100. Consequently, the better
the model, the lower the values of these criteria are. Furthermore, visual inspections, such
as scatter plots, were used to compare the performance of the developed models.

5. Results and Discussion
5.1. Comparative Performance

In this paper, various kernel function-based Gaussian process regression techniques
were implemented using Waikato environment for knowledge analysis (WEKA). WEKA
is an open-source software which consists of a collection of machine learning algorithms
for data mining tasks. Most machine learning algorithms have hyperparameters that must
be tuned. The critical hyperparameters in the GPR-RBF, GPR-Poly, and GPR-PUK models
are tuned in this study as shown in Table 4. The values for the models’ tuning parameters
were chosen first, and then varied in the trials until the best fitness measures in Table 4
were obtained.

Table 4. Different regression models’ optimal tuning parameters.

Model Parameters for Optimal Tuning

RBF kernel {noise = 0.25, gamma = 0.02}
Poly kernel {noise = 0.5}
PUK kernel {noise = 0.3, omega = 0.85, sigma = 0.9}

Table 5 shows the R2, r, MAE, RMSE, RAE, and RRSE values for shear strength
estimation after hyperparameter tuning for the training and testing phases, respectively.
At a glance, for both tables, GPR-PUK is the top-ranked model. For the training results,
based on the R2 (0.9224, 0.9430, and 0.9806), r (0.9604, 0.9711, and 0.9903), MAE (0.1565,
0.1015, and 0.0646), RMSE (0.2219, 0.1605, and 0.0965), RAE (31.7002%, 20.5572%, and
13.0776%), and RRSE (31.7002%, 20.5572%, and 13.0776%), respectively, for GPR-RBF, GPR-
Poly, and GPR-PUK models, the GPR-PUK outputs are verified to be the most compatible
with actual RFM shear strength values. Following that, GPR-Poly demonstrated a high
level of accuracy. Furthermore, the findings obtained for the testing dataset demonstrate
GPR-PUK’s superior performance. Considering the respective values of R2 (0.9334, 0.9411,
and 0.9455), r (0.9661, 0.9701, and 0.9724), MAE (0.1395, 0.1092, and 0.1048), RMSE (0.1781,
0.1508, and 0.1443), RAE (29.0963%, 22.783%, and 21.8554%), and RRSE (29.2377%, 24.7641%,
and 23.6865%), respectively, for the GPR-RBF, GPR-Poly, and GPR-PUK models, GPR-Poly
is the second most precise model, and GPR-PUK has outperformed both GPR-RBF and
GPR-Poly. In comparison with the ANN model (R2 = 0.9386) and linear regression method
(R2 = 0.836) reported by Kaunda [27] and Andjelkovic et al. [41], respectively, for the test
data, the proposed GPR-PUK (R2 = 0.9455) has better prediction capacity. In general, the
generalization and reliability of the GPR-PUK perform well, and larger datasets can yield
better prediction results.
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Table 5. Statistical indices and error measures between experimental/actual and predicted shear
strength of three different models used in present study for RFMs.

Model Dataset R2 r MAE (MPa) RMSE (MPa) RAE (%) RRSE (%)

GPR-RBF
Training 0.9224 0.9604 0.1565 0.2219 31.7002 33.6238
Testing 0.9334 0.9661 0.1395 0.1781 29.0963 29.2377

GPR-Poly Training 0.9430 0.9711 0.1015 0.1605 20.5572 24.3232
Testing 0.9411 0.9701 0.1092 0.1508 22.783 24.7641

GPR-PUK
Training 0.9806 0.9903 0.0646 0.0965 13.0776 14.6311
Testing 0.9455 0.9724 0.1048 0.1443 21.8554 23.6865

In addition, for the GPR-RBF, GPR-Poly, and GPR-PUK models, the graphical
correlation between measured (on the horizontal axis) and predicted (on the vertical
axis) shear strength is presented in Figure 2a for the training dataset and Figure 3a for the
testing dataset, respectively. The trend line for GPR-PUK has been drawn by comparing the
observed regression in Figures 2a and 3a, and the GPR-PUK findings have the maximum
inclination to the line of y = x (i.e., R2 = 0.9806).

The accuracy of all the developed models i.e., GPR-RBF, GPR-Poly, and GPR-PUK
in predicting RFM shear strength is illustrated in Figure 2b for the training dataset and
Figure 3b for the testing dataset, respectively. As seen in this graph, the closer one moves
to the y axis (i.e., the lower the error), the higher the accuracy in both the training and
testing datasets. Here, the GPR-PUK model has presented the most reliable prediction.
This is evident by the higher aggregation of the results around the y axis (y = 0), except
for a few noise points. In comparison to the other models, i.e., GPR-RBF and GPR-Poly,
the comparison findings are sufficiently consistent, which is adequate for the proposed
GPR-PUK model to predict RFM shear strength values.
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Figure 2. Comparison of the results in the training dataset of the various kernel function-based Gaussian process regression (GPR) models (a) measured vs. predicted
RFM shear strength, (b) showing the accuracy of the models in predicting RFM shear strength.



Materials 2022, 15, 1739 10 of 15Materials 2022, 15, 1739 10 of 16 
 

 

Figure 3. Comparison of the results in the testing dataset of the various kernel function-based Gaussian process regression (GPR) models (a) measured 
vs. predicted RFM shear strength, (b) showing the accuracy of the models in predicting RFM shear strength.

  
(a) 

  
(b) 

y = 0.8007x + 0.1323
R² = 0.9334
GPR-RBF

0.00

0.50

1.00

1.50

2.00

2.50

0.00 1.00 2.00 3.00Pr
ed

ic
te

d 
R

FM
 s

he
ar

 s
tr

en
gt

h 
(M

Pa
)

Actual RFM shear strength (MPa)

y = 0.9891x + 0.0092
R² = 0.9411
GPR-Poly

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 1.00 2.00 3.00Pr
ed

ic
te

d 
R

FM
 s

he
ar

 s
tr

en
gt

h 
(M

Pa
)

Actual RFM shear strength (MPa)

y = 0.9082x + 0.0532
R² = 0.9455
GPR-PUK

0.00

0.50

1.00

1.50

2.00

2.50

0.00 1.00 2.00 3.00

Pr
ed

ic
te

d 
R

FM
 s

he
ar

 
st

re
ng

th
 (M

Pa
)

Actual RFM shear strength (MPa)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 8 15 22 29

R
FM

 s
he

ar
 s

tr
en

gt
h 

(M
Pa

)

Dataset

Actual
GPR-RBF

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 8 15 22 29

R
FM

 s
ge

ar
 s

tr
en

gt
h 

(M
Pa

)

Dataset

Actual
GPR-Poly

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 8 15 22 29

R
FM

 s
he

ar
 s

tr
en

gt
h 

(M
Pa

)

Dataset

Actual
GPR-PUK

Figure 3. Comparison of the results in the testing dataset of the various kernel function-based Gaussian process regression (GPR) models (a) measured vs. predicted
RFM shear strength, (b) showing the accuracy of the models in predicting RFM shear strength.
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5.2. Rank Analysis

Rank analysis assigns score values to statistical parameters, using their ideal values as a
benchmark, based on the number of models utilized. The model with the best performance
receives the highest score, and vice versa. Table 6 shows how the total efficiency ranking
of the developed models is interpreted using a rank analysis (i.e., the summation of the
ranks of R2, r, MAE, RMSE, RAE, and RRSE into a single ranking score for the training and
testing datasets). Based on the obtained total ranking scores of 12, 24, and 36 (respectively
for GPR-RBF, GPR-Poly, and GPR-PUK), the superiority of GPR-PUK can be concluded (i.e.,
it has the most significant total rank). The GPR-Poly model has commonly been labeled
as the second most accurate model. The most significant point about Table 6 is that the
GPR-RBF, GPR-Poly, and GPR-PUK predictive models achieved the same rank for each
measure. The GPR-PUK and GPR-RBF, for instance, had the highest (3) and lowest (1) level
of accuracy, based on the R2, r, MAE, RMSE, RAE, and RRSE indices simultaneously.

Table 6. The results of the employed models’ rank analysis.

Model GPR-RBF GPR-Poly GPR-PUK

Parameter Training Testing Training Testing Training Testing

R2 1 1 2 2 3 3
r 1 1 2 2 3 3

MAE 1 1 2 2 3 3
RMSE 1 1 2 2 3 3
RAE 1 1 2 2 3 3
RRSE 1 1 2 2 3 3

Rank Score 6 6 12 12 18 18

Total Ranking Score
(Training and Testing) 12 24 36

Total Rank 3 2 1

5.3. Sensitivity Analysis

Yang and Zang’s [42] sensitivity analysis was used to analyze the developed models’
ability to analyze the impact of input variables on the shear strength of rockfill material.
This method has been used in several research studies [43–46], and is as follows,

rij =
∑n

m=1(yim × yom)√
∑n

m=1 yim
2∑n

m=1 yom2
(11)

where n is the number of data values, and yim and yom are the input and output parameters.
For each input parameter, the rij value varied from zero to one, with the highest values
indicating the most efficient output parameter (which was τ in this study). To estimate the
relationship between input and output variables, the value of rij must be close to 1. Figure 4
shows the degree of importance of the input variables based on the experimental actual
and predicted values of the shear strength. As it can be seen, the importance of different
parameters can be displayed as σn > D90 > γ > R > FM > UCSmin> D60 > GM > UCSmax >
D30 > Cc > Cu > D10. In other words, the σn is the most important parameter, and the D10 is
the least important parameter for predicting the shear strength of the RFMs. Furthermore,
Table 3 shows that the normal stress σn has the highest ρ of 0.966 in all other parameters,
validating the sensitivity analysis results.
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Figure 4. Sensitivity analysis of the input parameter.

5.4. Taylor Diagram

The Taylor diagram [47] is a simple visual depiction of a model’s performance com-
pared to other models. Three indices are represented in the Taylor diagram: the correlation
coefficient, the standard deviation, and the root mean square difference (RMSD). The model
outcomes are compared in the Taylor diagram displayed in Figure 5 for a more in-depth
examination of the results. The Taylor diagram, which compares the standard deviation
(vertical and horizontal axes), correlation coefficient (radial lines), and RMSD, is a valuable
tool for illustrating the accuracy of prediction models (green circular lines). The most
accurate model, indicated by a pink dot (i.e., GPR-PUK), is introduced as having a similar
standard deviation, higher correlation, and reduced RMSD when evaluating real values in
the training and testing datasets. Figure 5 shows that the GPR-PUK model is closer to the
red dot (actual/reference values) than the other GPR-RBF and GPR-poly models, indicating
that this model is accurate.
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6. Summery and Conclusions

In this research, efforts have been made to create various kernel function-based re-
gression models, i.e., GPR-RBF, GPR-Poly, and GPR-PUK, that may be used to predict the
shear strength of RFMs. To train and test the development models, a database from the
published literature with different values of influential parameters on RFMs, including
D10, D30, D60, D90, UCSmin, UCSmax, FM, GM, γ, σn, and R, is considered. The data are split
into two categories: training set (80%) and testing set (20%). The output shear strength
(τ) of the developed models was evaluated using statistical parameters, including R2, r,
MAE, RMSE, RAE, and RRSE. Furthermore, visual inspection, such as with scatter plots,
was also used to assess the effectiveness of the developed models. The applications for
the aforementioned models for predicting the shear strength of RFMs were compared and
discussed. The following conclusions are made based on the obtained results of this study:

1. GPR-PUK achieved an R-squared (R2) of 0.9806, a correlation coefficient (r) of 0.9903,
a mean absolute error (MAE) of 0.0646 MPa, a root mean square error (RMSE) of
0.0965 MPa, a relative absolute error (RAE) of 13.0776%, and a root relative squared
error (RRSE) of 14.6311% in the training phase. In the testing phase, it performed
equally well, with R2 = 0.9455, r = 0.9724, MAE = 0.1048 MPa, RMSE = 0.1443 MPa,
RAE = 21.8554%, and RRSE = 23.6865%. The GPR-PUK model was found to be more
accurate and stable than the other models. Furthermore, the PUK kernel model had
a superior agreement to the observed data based on the scatter plots of actual and
predicted values, indicating that it has the potential for wider applications in RFM
properties prediction.

2. The results of the sensitivity analysis show that the degree of importance of different
input parameters for predicting the shear strength of RFMs is as follows: σn > D90 > γ
> R > FM > UCSmin> D60 > GM > UCSmax > D30 > Cc > Cu > D10.

3. The developed PUK kernel model makes predictions as accurate as those made by
other soft computing techniques. This research also points out that these machine
learning techniques can be a potential approach for estimating basic soil parameters,
such as the soil permeability coefficient.

GPR-PUK can be used to predict the shear strength of RFMs with high accuracy,
according to this study. The sample size is, however, limited. As a result, this study
should be extended to include a larger sample size. Furthermore, future studies using other
algorithms, such as XGBoost, evolutionary polynomial regression, and gene expression
programming, should be utilized to evaluate the algorithms’ effectiveness and gain a
comprehensive understanding of the techniques used for predicting the shear strength of
RFMs.
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