

Search Sources Lists SciVal >

?

Create account

Sign in

到 Export 业 Download 日 Print 区 E-mail 图 Save to PDF ☆ Add to List More... >

Full Text

IIUM Engineering Journal • Open Access • Volume 23, Issue 1, Pages 294 - 309 • 2022

Document type

Article · Gold Open Access

Source type

Journal

ISSN

1511788X

DOI

10.31436/IIUMEJ.V23I1.1816

Publisher

International Islamic University Malaysia-IIUM

Original language

English

View less ^

MAGNETICALLY MODIFIED SUGARCANE BAGASSE DISORDERED CARBON AS A CADMIUM REMOVAL AGENT IN WATER

 $\underline{\text{Baharudin I.S.}}^{a}, \ \underline{\text{Noor N.M.}}^{b} \ \underline{\boxtimes} \ , \ \underline{\text{Abdullah E.C.}}^{a}, \ \underline{\text{Othman R.}}^{b}, \ \underline{\text{Mujawar M.N.}}^{c}$

Save all to author list

- ^a Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur, 54100, Malaysia
- ^b Science in Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, 53100, Malaysia
- ^c Department of Chemical Engineering, Curtin University, Sarawak, Sarawak Campus CDT 250, Miri, 98009, Malaysia

Full text options >

Abstract

Author keywords

Reaxys Chemistry database information

SciVal Topics

Metrics

Funding details

Abstract

Cited by 0 documents

Inform me when this document is cited in Scopus:

Set citation alert >

Related documents

Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration

Ma, Y., Qi, Y., Yang, L. (2021) Journal of Cleaner Production

Numerical assessment of nitrogen removal from swine wastewater in activated sludge systems: Comparison between continuous and intermittent aeration

Waki, M. , Yasuda, T. , Fukumoto, Y. (2020) Bioresource Technology Reports

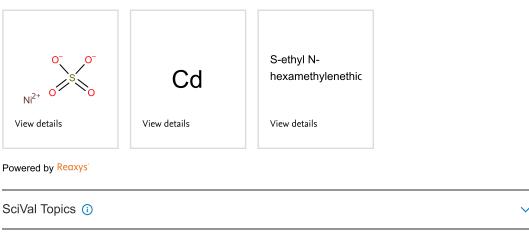
Enhanced biotreatment of partial nitrified incineration leachate by applying electric potential in anammox system | 外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水

Liu, Z., Dang, Y., Tian, H. (2019) Chinese Journal of Environmental Engineering

View all related documents based on references

Find more related documents in Scopus based on:

Authors > Keywords >

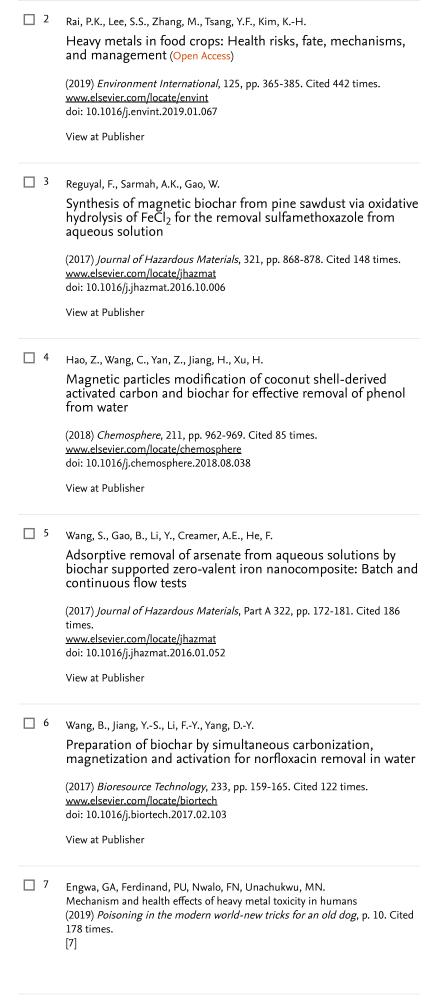

Heavy metals are hazardous to health at certain levels. Currently, heavy metals are removed by physicochemical treatments, such as adsorption, flotation, and electrochemical deposition, and also biological treatments, such as algal biofilm reactor and anaerobic ammonium oxidation. In this study, magnetic biochar was produced to enhance the effectiveness and performance of the adsorbent for heavy metal removal. This study aimed to synthesise high-performance magnetic biochar, to determine the optimum parameters and conditions for high yield of magnetic biochar and high removal of cadmium (Cd2+) from aqueous solution, and to determine the adsorption kinetics and isotherms for Cd^{2+} removal. Nickel oxide (NiO)-impregnated sugarcane bagasse was subjected to slow pyrolysis to produce magnetic biochar. The impregnated metal, pyrolysis temperature, and pyrolysis time were varied to determine the optimum parameters and conditions to produce high-performance magnetic biochar. The removal of Cd²⁺ from aqueous solution and batch adsorption study were conducted. The synthesised magnetic biochar was characterised using field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier transform infrared (FTIR), and vibrating sample magnetometer (VSM). The adsorption data agreed well with the pseudo-second-order model and followed the Langmuir isotherm model. This study achieved 88.47% removal efficiency of Cd²⁺ from aqueous solution. Thus, the removal of this heavy metal as a human carcinogen reduces the hazardous effects on human health and reduces the toxicity in the environment. © 2022. IIUM Engineering Journal. All Rights Reserved.

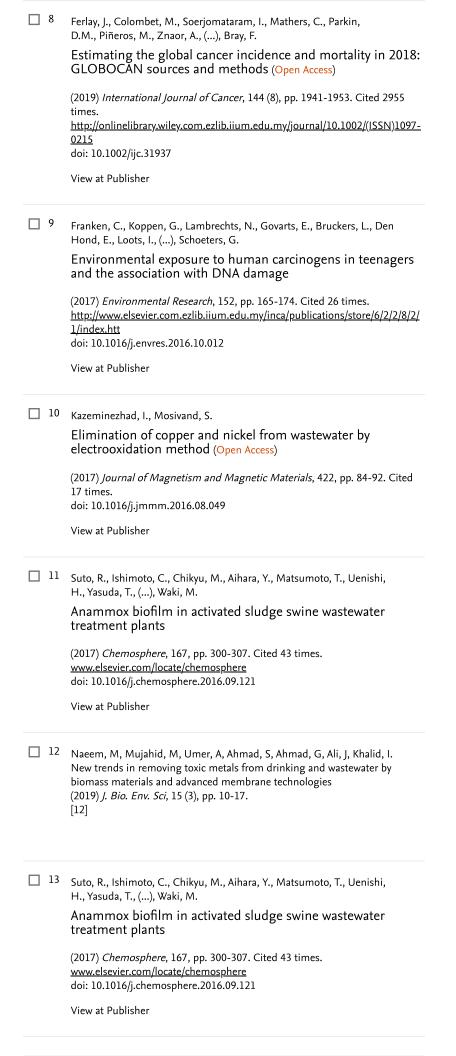
Author keywords

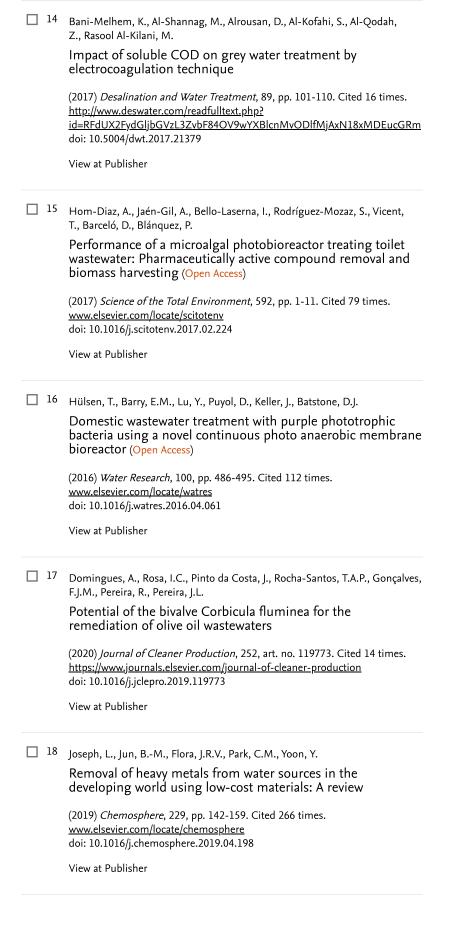
Biomass; Heavy metal removal; Magnetic biochar

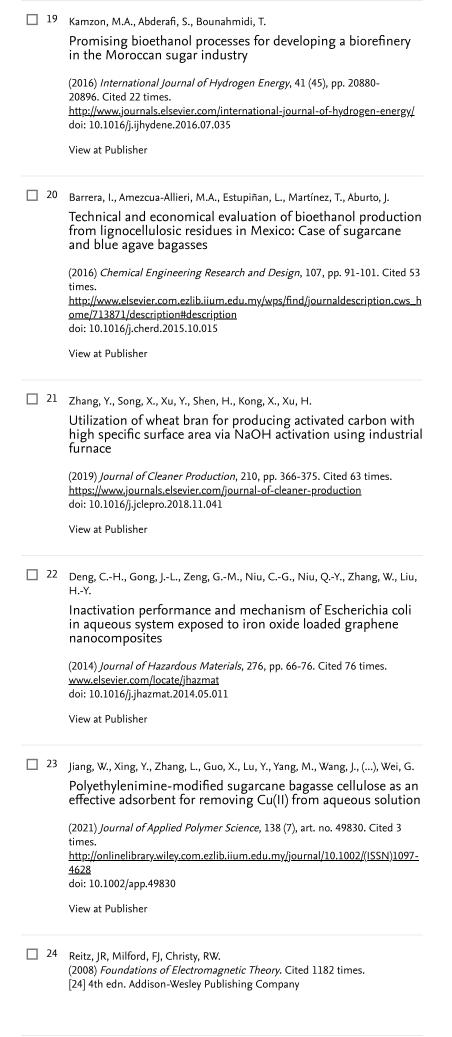
Reaxys Chemistry database information (1)

Substances View all substances (3)




Metrics


Funding details


V

View in search results format > References (28) Export ☐ Print 🔀 E-mail 丽 Save to PDF Create bibliography \square 1 Liao, T., Li, T., Su, X., Yu, X., Song, H., Zhu, Y., Zhang, Y. La(OH)₃-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal (2018) Bioresource Technology, 263, pp. 207-213. Cited 111 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.04.108 View at Publisher

<u> </u>	Foo, K.Y., Hameed, B.H.
	Mesoporous activated carbon from wood sawdust by K $_2$ CO $_3$ activation using microwave heating
	(2012) <i>Bioresource Technology</i> , 111, pp. 425-432. Cited 161 times. doi: 10.1016/j.biortech.2012.01.141
	View at Publisher
<u> </u>	Zhu, T., Chen, J.S., Lou, X.W.D.
	Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area
	(2012) <i>Journal of Physical Chemistry C</i> , 116 (12), pp. 6873-6878. Cited 211 times. doi: 10.1021/jp300224s
	View at Publisher
<u> </u>	Collard, FX., Bensakhria, A., Drobek, M., Volle, G., Blin, J.
	Influence of impregnated iron and nickel on the pyrolysis of cellulose
	(2015) Biomass and Bioenergy, 80, pp. 52-62. Cited 36 times. http://www.journals.elsevier.com/biomass-and-bioenergy/doi: 10.1016/j.biombioe.2015.04.032
	View at Publisher
<u>28</u>	Chen, B., Zhou, D., Zhu, L.
	Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
	(2008) Environmental Science and Technology, 42 (14), pp. 5137-5143. Cited 1174 times. doi: 10.1021/es8002684
	View at Publisher
Noor, N.M.; Science in Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia; email:norainimnoor@iium.edu.my Copyright 2022 Elsevier B.V., All rights reserved.	

 ζ Back to results $\mid 1$ of 1 \land Top of page

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語に切り替える

切换到简体中文

切換到繁體中文

Русский язык

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions *¬* Privacy policy *¬*

Copyright © Elsevier B.V 对. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

