Virtual Mechanical Ventilation Protocol - A Model-based Method To determine MV Settings

By: Arunachalam, GR (Arunachalam, Ganesa Ramachandran) [1]; Chiew, YS (Chiew, Yeong Shiong) [1]; Tan, CP (Tan, Chee Pin) [1]; Raib, AM (Raib, Azrina Mohd) [2]; Nor, MBM (Nor, Mohd Basri Mat) [2]

IFAC PAPERONLINE

Volume: 53 Issue: 2 Page: 16119-16124
DOI: 10.1016/j.ifacol.2020.12.432
Published: 2020
Indexed: 2021-06-23

Conference
Meeting: 21st IFAC World Congress on Automatic Control - Meeting Societal Challenges
Location: ELECTR NETWORK
Date: JUL 11-17, 2020

Sponsors: Int Federat Automat Control; Siemens; Bayer; ABB; MathWorks; Phoenix Contact; Ifak Technol; Berlin Heart; Elsevier; De Gruyter; Tele Medi GmbH

Abstract
Intensive care mechanical ventilation (MV) therapy is a lifesaving intervention for a patient with respiratory failure. MV supports patients breathing by maintaining positive airway pressure and airflow to the lung. However, there is currently little clinical consensus protocol to set the best MV setting. Hence, it is important to provide an objective and patient-specific MV settings to support patient recovery. This study presents a model-based method to find optimal MV settings using clinical bedside data. A mathematical model of the respiratory system is first used to estimate patient-specific respiratory mechanics. These mechanics are then incorporated with significant clinical findings from the literature to simulate a series of MV settings. The simulation of MV settings is performed using the single compartment lung model using the MATLAB software. From this series of simulated MV settings, optimal MV settings can be determined objectively by the clinician. This model-based method potentially provides decision support for the clinician to set optimal MV settings. Copyright (C) 2020 The Authors.