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Abstract. Aluminum alloy is one of the most common and basic metallic alloys used as a matrix 

phase of composite material due to its higher strength-to-weight ratio, enhanced thermal 

conductivity, excellent stiffness as well as wear and corrosion resistance properties. Aluminum 

based composite materials have become an obvious entry into many industries such as 

automobile, aerospace, construction, household appliances, and food packaging industries. The 

common reinforcement materials to fabricate aluminum composites are aluminum oxide, silicon 

carbide, boron carbide, boron nitride, titanium carbide, tungsten carbide and titanium diboride. 

However, most of the ceramic based reinforcement materials are expensive and not 

environmentally or human friendly. Recent research has been tailored to the use of industrial 

waste as a reinforcement for aluminum composites such as slag, red mud, fly ash, arc furnace 

dust and waste glass. The use of natural materials such as glass and marble waste is promising 

because they are cheaper than conventional ceramic reinforcement and they also might enhance 

the properties of the composite. Therefore, this study aims to make a comparative study for 

mechanical and physical experimental work on using 5% marble wastes (MW) as a natural 

reinforcement and 5% graphene oxide (GO) as an industrial origin reinforcement in LM6 

aluminum composites.  Mechanical testing methods like tensile test, hardness and impact test 

are conducted. Elemental analysis and microstructure properties using optical microscope and 

SEM and EDS to study the homogeneity of particles distributions and type of fracture surface. 

The results showed the superiority of GO over MW where the Ultimate Tensile Strength (UTS) 

increased by 45% in GO, while 16% in MW. The value of Rockwell hardness of both composites 

materials was obtained which is more than doubled than that of LM6 alloy material. The Impact 

test rate increased in LM6/MW by 19% while approximately LM6/GO 36%. Marble waste and 

graphene oxide particles were homogeneously distributed in the matrix, and a strong bond was 

formed between the aluminum and the reinforced partition. 

 1. Introduction  
Over the last few decades, there has been a growing demand for modern, stronger, and stiffer yet lighter-

weight materials in the aerospace, transport, automotive and construction industries. Because of rapidly 

advancing activities in the automotive and aerospace industries, composite materials are developed 

primarily to increase technology demands [1].  Materials Scientists constantly explore all ways and 
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means by which innovative and advanced materials can be developed to meet the ever-changing 

requirements with unique enhanced material properties.  

Composite materials, since their inception, have proven to a potential alternate material to replace many 

conventional metals and alloys due to enhanced mechanical and physical properties. Composite 

materials are multiphase materials which are immiscible within each other and have a low specific 

gravity that makes them especially superior in strength and modulus to their properties. 

 
 2. Background Review 

Processing and manufacturing composite components with current technology are more expensive due 

to difficulty in materials inspection, trouble shooting, and reusing constituent materials. The cost, 

characteristics, and availability associated with reinforcing phase would also add to the composite 

making's higher total cost. Table 1 shows a comparison between the use of conventional Al alloys and 

its composite in terms of costs and component weights. It is quite clear that although there is a huge 

weight reduction (86%) and the number of parts used (64%) when composite is recommended, the cost 

of composites has almost doubled (93%) and not comparable with that of Al Alloys. However, due to 

improving mechanical properties in composites will make operating costs over the long run of service 

less and break even the differences much quickly[2]. 

         Table (1) Comparison of estimated material parameters for Al and its composites 

 

 

 

 

 

 

Therefore, it is crucial for high-intensive composite users such as aerospace and automobile industries 

to carefully select the materials before pressing them into manufacturing. Researchers are also working 

on various solutions to lower the cost of composites, including improvements in manufacturing process 

performance. Several alternatives may be explored, such as single-step mixing, and utilizing lower-cost 

reinforcements. 

Because of their excellent tribological properties in comparison to base alloys, the use of aluminum 

matrix materials in the transportation and aerospace industries is increasing rapidly. Because of their 

lower density, good formability, modulus, high, wear and tensile strength, metal-matrix composites, 

such as magnesium or aluminum are finding large use. They are used in various vehicle parts such as 

pistons, valve assemblies, blocks, and gaskets. Aluminum-based composites reinforced with Nano SiC, 

Al2O3, TiO, ZrO, SiO, and graphite particles change the microstructure to produce superior mechanical 

and physical properties [3]. However the issue is the cost and average price of composites. Eventually, 

some researchers used industrial waste materials like slag, red mud, fly ash, arc furnace dust, and waste 

glass to reinforce aluminum matrix phase to turn them into composites. The reuse of industrial wastes 

reduces environmental pollution through landfills. A new class of strengthening additives has recently 

emerged in novel carbonaceous (CNTs) nanomaterial, namely carbon nanotubes, fullerene, and 

graphene oxides. The following section showed a variety of industrial waste materials being used 

as reinforced phase material for the production of AMCs.  
2.1. Waste for Refining (Spent Alumina Catalyst): Catalysts are used in oil refineries to crack petroleum 

products in hydro-processing systems. Catalysts are rejected from the units over time and become solid 

waste. Because of their dangerous nature and harmful chemical content, spent catalysts must be disposed 

of according to strict environmental regulations[4]. As a result, preliminary research has been conducted 

to produce AMC using scrap aluminum alloy wheel (SAAW) as a matrix material. As reinforcement, 

oil refinery waste such as spent alumina catalyst (SAC) (5 % mass fraction and particle size 150 µm) 

Materials 

used 
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of parts 

%decrease 

in number 

of parts 

Weight 

in kg 

%decrease 

in weight 

Estimated 

Cost $ 

% increase 

in cost 

Aluminum 117 64% 12959.35 86% 91857.08 93% 

AL 

composite 

42 1873.30 178141.63 



 

 

 

 

 

 

was used. Microstructural analysis, however, reveals that the addition of SAC to the matrix resulted in 

porosity in the composite material[5]. 

2.2. Red mud: Red mud is an industrial waste product generated during the aluminum production process 

from bauxite ore. This waste material is released into the environment, causing soil, water, and air 

pollution. As a result, research has been conducted on red mud to use as an alternative reinforcement 

because it is relatively cheaper, natural, and abundant. Using the stir casting technique, the authors of 

(Singh and Chauhan 2017) created aluminum 2024 matrix hybrid composites reinforced with Sic (5%, 

mass fraction) and red mud (5-20%, mass fraction) particles. In their study, the composites' mechanical 

properties, such as tensile strength, improved as the amount of red mud used as reinforcement increased. 

The red mud particles (particle size 37𝜇m) were homogeneously distributed in the microstructure of the 

hybrid composites [6].  

2.3. Fly Ash: It is one of the residues generated by flue gas during the combustion of coal solids and is 

a waste by product. It is the most affordable and low-density reinforcement material available in large 

quantities in electric power plants[7]. Bharathi created the composite material using the stir casting 

technique, with LM25 as the matrix and fly ash forms as the reinforcement phases (5% wt). The hardness 

of the composite metal reached 125 HV [8].To manufacture the composite material, the stir casting 

process was used to fabricate the metal matrix composite using LM6 as the matrix and two separate 

forms of fly ash (type-A and Type-B) as the reinforcement phases. As compared to type-A fly ash, type-

B fly ash had improved mechanical properties such as impact strength, tensile strength, and hardness. 

The fly ash particles are evenly blended with the matrix content [6]. 

2.4. Electric Arc Furnace Dust:  Electric arc furnace dust (EAFD) is a hazardous solid waste generated 

during the steel manufacturing process. The use of dust from these factories prevents it from being 

disposed of in toxic waste landfills. It saves money. Oliveira et al. used powder metallurgy to create 

aluminum matrix composites reinforced (5 % wt. and 53 µm) with EAFD particulate. The addition of 

EAFD to the aluminum matrix resulted in improved micro hardness values of up to 85.09 5.7 HV  [9]. 

2.5. Slag: It is a waste that is removed from the industry of steel. Slag is produced routinely throughout 

the year in large volumes. The industry was encouraged to look for an alternative way to manage its 

waste through-products by rigorous environmental legislation. In article [10], the authors used an 

aluminum slag composite powder metallurgy process. The addition of five percent slack to the 

aluminum matrix resulted in a compressive strength gain of up to 372MPa. 

2.6. Waste Glass: Pollution from waste glass is prevalent across the world, both in terms of health risk 

and quantity. Mercury and lead present in the waste cathode ray tube (CRT) and lamp glass are the 

major pollutants. Bernardo et al, Fabricated aluminum reinforced glass matrix composites via cold-

pressing and viscous flow sintering. Fracture toughness has been conducted on the waste glass and 

aluminum matrix composites, which had revealed the maximum bending strength increase about the 

unreinforced matrix and a very low standard deviation[11]. 

2.7. Mines Waste: Mine waste causes contamination to the land near mines. It causes a severe threat to 

humans, animals, plants, and microorganisms near mine sites ([12]. Siva et al. investigated AMC, which 

is developed using aluminum matrix and mines waste-(CS) colliery shale material as reinforcement. The 

developed AMC has shown improved mechanical properties. SEM micrographs of the produced 

composite revealed very fine particles with different shapes and sizes distributed uniformly across 

matrix material. The fabricated composite has shown better machinability[13]. 

2.8. Marble Waste: Ceramic artworks is another prospective area where the waster powders of marble 

could be employed as fillers. The authors of another study in the year 2017 have assessed the possibility 

of the use of marble waste (MW) powders in the production of stoneware clay bodies. Many samples of 

clay body specimens with marble waste up to 27% were prepared and evaluated for parameters. The 

tests' results show that the utilization of marble waste in stoneware body is very advantageous for 

ceramic artwork production[14].The authors took another specific application of marble waste powders 

in the year 2020 to evaluate untreated marble waste's suitability as an active pigment in paints. Authors 

have conducted a weatherability test, which demonstrated that the addition of marble waste powders to 



 

 

 

 

 

 

the colours enhanced much durability and integrity under high-temperature conditions. Therefore, this 

study opened up another promising alternative waste material for producing paints[15]. 

2.9. Graphite building materials: Recently, a particular type of graphite building materials called 

graphene oxide (GO) is used to control the corrosion on the metallic surfaces after implemented as an 

anti-corrosive coating material. It is reported that GO consist of a large number of ‘carboxyl’ groups 

that impart incredible wettability, dispersibility and surface activity characteristics[16]. The name 

graphene attributes to the compact honeycomb structure of carbon atoms which has the ability to be 

wrapped into thin sheets and rolled into nanotubes or piled up into laminates. This ability is brought 

about by a specific way in which the carbon atoms are bonded with surrounding atoms in this 

microstructure[17]. Fuhaid, used 5% graphen oxide nanoparticles with (LM6 alumnium alloy). The 

tensile strength of the composite material was improved by 45%, and the hardness of the composite 

material was more than twice that of the LM6 alloy material[18]. 

 In summary, many industrial and natural waste materials are being extensively tested to determine if 

sustainable, cost-effective, and equally robust composites can be produced and used for automotive 

applications. In this paper, the mechanical properties of natural waste represented by marble waste and 

industrial waste represented by graphene oxide will be compared in addition to its suitability for 

automotive applications, 

3. Material and Methods 

The current paper characterizes LM6/GO industrial origin and LM6/MW neutral origin composite 

materials in order to assess their suitability for automobile applications. As a result, LM6 was chosen as 

the matrix phase material, and it was reinforced with a 5% volume fraction of GO and MW particles to 

create the composite materials. The LM6 aluminum alloy was obtained from Metal Engineering 

Company LLC in Oman, the GO powder (size, 5-10 μm) from Platonic Nanotech Private Limited, and 

the MW powder (size, 75 μm) from Natural Stone Company LLC in Oman. Table 1 shows the chemical 

compositions of GO and MW particles. The continuous stir casting process has traditionally been used 

in the production of composites. This method entails melting and continuously spinning the matrix-

phase material into a barrel while gradually adding the refurbishment material in the oven.  

Table 1. The chemical compositions of GO and MW particles. 

Chemical composition for partials  

GO MW 

Element WT.% Element WT.% 

C 61.67 SiO2 0.29 

O 37.89 Al2O3 0.05 

Na 0.27 Fe2O3 <0.04 

S 0.18 MgO 0.36 

CaO 55.86 

TiO2 <0.01 

P2O5 <0.01 

MnO <0.01 

 

Table 2 and Table 3 present the value of chemical composition and mechanical properties of LM6 

aluminium alloy, respectively. 

Table 2. Chemical composition LM6 aluminium alloy 

  
Elements 

Materials Cu Mg Si Fe Mn Ni Zn Pb Sn Ti Al 

LM6Aluminum 

(Cast alloy) 
0.1 0.1 13 0.6 0.5 0.1 0.1 0.1 0.05 0.2 balance 

 



 

 

 

 

 

 

Table 3. Mechanical properties of LM6 aluminium alloy 

  
Mechanical Properties 

Materials 
Elastic 

Modulus(GPa) 

Tensile 

Stress (MPa) 

0.2% Proof 

Stress (MPa) 

Brinell 

Hardness 

Elongation 

(%) 

LM6Aluminum 

(Cast alloy) 
71 110-190 60-70 50-55 5% 

 

The distribution of reinforcement materials within the matrix phase structure is determined by the 

operating temperature, kiln rotation speed, and volume of strengthening phase materials within the kiln. 

However, due to increased advantages, the squeeze casting technique has recently been used. As shown 

schematically in Figure 1, the stir squeeze casting setup was changed to stir the molten metal with 

reinforcement and hydraulic forging before solidification. 

 

Figure 1. Modified Stir Squeeze Casting Machine 

The solid LM6 alloy was heated to 750oC, which is above its melting point, during this process. The 

molten metal was stirred for 10 minutes at 525 rpm to achieve a homogeneous mix before being poured 

into the die and immediately forged using a hydraulic press under a relatively high external pressure of 

75 MPa. Table 4 displays the process parameters used in the stir casting process to create the LM6/GO 

and LM6/MW composites. 

 Table 4. Process Parameters of Stir Squeeze Casting Process 

S No Process Parameters Value 

1 Stirring temperature 750oC 

2 Stirring speed 525 rpm 

3 Stirring time 10 min 

4 Preheat temperature of reinforcement particles 300oC 

5 Preheat temperature of the permanent die 250oC 

6 Squeeze pressure 75 MPa  

7 Matrix material (LM6) 95% 

8 Reinforcement material (MW) 5% 

9        Reinforcement material (GO)             5% 

 
 



 

 

 

 

 

 

The morphological, microstructural, and crystalline phases of matrix (LM6) and reinforcement (GO) 

and (MW) materials and their composites were investigated using the methods described below. 

3.1. Optical Microscopy (OM): The most effective non-destructive method for analysing the interstitial 

and replacement arrangements of atoms, impurities, or doping elements within a substance. This real-

time imaging technique is extremely accurate and flexible for studying the microstructure of a variety 

of engineering materials. 

3.2. Scanning Electron Microscopy (SEM): This method involves scanning material surfaces with a 

stream of electrons at varying thicknesses in order to analyse the topography and perform defect 

analysis. Appropriate scanned photographs of the surface at different locations reveal the composition 

of the specimen under examination. In this study, a Jeol Company, Japan, JSM-7600F Schottky Field 

Emission Scanning Electron Microscope with resolutions of 1.0 nm (15kV) and 1.5 nm (1kV) was used. 

3.3. Mechanical Testing: Mechanical testing was carried out on the LM6 alloy, LM6/GO, and LM6/WM 

composites to assess the strength consideration before and after the composite manufacturing process. 

Showed that the samples performed according to ASTM E-8 according to the universal testing machine 

(UTM). The hardness of the composite was measured using the Rockwell hardness tester. The Charpy 

impact test measures how much energy a substance absorbs during a fracture. The energy consumed is 

an indicator of the hardness of the material. A standard sample was used (10 mm × 10 mm ×55 mm) 

according to ASTM A370.and the results are presented in the following section. 

 

4. Results & Discussion   

 

The microstructures of the LM6, LM6/MW and LM6/GO were examined and characterized for the 

nature and morphology of the grain structure and distribution of other intrinsic features in the 

microstructure. Figure 2 shows clearly distinguishes the LM6 alloy and the reinforcement of MW and 

GO particles. One of the unique features demonstrated is dense and nonporous microstructure. It is to 

be observed that the composites' better mechanical properties can be explained by the filler effect 

provided by MW and GO powders and the densification of constituents of the composite. Also noted is 

that the particle distribution of marble waste is acceptable because the particles are distributed across all 

parts of the LM6, because of the 75 µm particle size. The GO particles' surface is seemingly lined up 

and equal distribution of the particles in LM6, thus demonstrating strength layered structure. The main 

reason is nano-size of GO particles in which Strong bonding was formed between the aluminum and 

reinforce particles. 

  

Figure 2. Optical Microscopic Image (a) LM6/MW (b) LM6/GO composites 

The reinforcing phases' homogeneous distribution is the first prerequisite for a composite material to 

demonstrate superior efficiency. The agglomeration of the reinforcement particles degrades the 

composite's mechanical properties[19]. The ease with which the various metals can be mixed is one of 

the benefits of stir squeeze casting. This opens up the possibility of creating new composite materials 

with specific physical and mechanical properties in a product that cannot be manufactured using the 

normal melting-casting method. There were no large agglomerations of MW particles, as shown in 

a b 



 

 

 

 

 

 

figure 3 (a), but there was some porosity with size rate ranges 31.36 μm at the rate of 9.457 % and 

particles size rate 65.74 μm. This is due to the fact that fine particles are easier to integrate into metal 

during mixing and have a more uniform reinforcement distribution. Larger particles are more prone to 

gravity settling, resulting in reinforcement clustering and agglomeration in the matrix area. The 

embedded GO particles are not symmetric and non-uniform in size, with relatively larger surface areas, 

as shown in Figure3 (b). This is due to the various sizes of GO ranging from 5-10 micron where the 

particles size rate is 6.254 μm. However, the bonding between the LM6 matrix and GO is strong due to 

GO's superior wettability with a matrix material. Furthermore, in a nutshell, the above characteristics 

showed the viability and suitability of these composite materials. Smaller reinforcement particles have 

a wider surface area for contact with aluminium particles. On the other hand, larger reinforcement 

particle sizes discourage contact and thus the diffusion process from advancing. GO particles act as 

dislocation flow barriers in an aluminum matrix. Composites reinforced with smaller GO particles have 

the most barriers per unit compared to composites reinforced with MW particles at the same percentage 

of reinforcement. It was noted that the average porosity size was 3.45 μm at the rate of 10.131 %   greater 

than that of MW. 

  

Figure 3. SEM Image (a) LM6/MW (b) LM6+GO particles 

The UTM was used to generate stress-strain curves for several samples. The ultimate tensile strength of 

pure LM6 alloy was found to be around 110 MPa, while three composite LM6+MW specimens were 

found to be around 121, 123, and 140 MPa, respectively. The tensile value of LM6/MW was found to 

have increased by approximately 16%. This means that the aluminum alloy reinforcement of 5% of the 

marble waste effective. However, the extension rate was reduced by 65 %, implying that the toughness 

was reduced by 65 %. The same numbers of the sample were conducted of the LM6 reinforced by 5 % 

Graphene oxide composition, as shown in figure 4. The test results are average from three different tests 

of the sample. It was observed the composite LM6/GO registered around 140, 157 and 170 MPa, 

respectively. It was observed that the tensile value of LM6/GO increased by approximately 45 %. This 

means that the aluminum alloy reinforcement of 5% of the graphene oxide was successful. On the other 

hand, the extension rate was reduced by 53 %, implying that the toughness was reduced by 53 %. 
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Figure 4. Tensile strength graph for LM6, LM6/MW and LM6/GO composites 

 

Hardness Test by Rockwell scale machine was used to perform the all samples aluminum alloy LM6 

and LM6+marble waste with LM6+graphene oxide. Five hardness reading registered for all specimens 

as shown in the table 5. 

Table 5.  Showed Rockwell Hardness values (HRF) 

 

 

 

 

 

 

The hardness test results for LM6, LM6 / MW, and LM6 / GO composites are shown in Figure 5. It 

was demonstrated that the hardness values of the resulting compounds increased by 25% as compared 

to LM6 Al pure alloys. 

 
Figure 5.Hardness test for LM6, LM6/MW and LM6/GO composites 

Interestingly, the hardness values increased in both aluminium composite materials.  The reinforcement 

phase did affect the mechanical properties very much with 5% volume reinforcements. The higher 

Specimen 

Type 

Read1 

HRF 

Read2 

HRF 

Read3 

HRF 

Read4 

HRF 

Read5 

HRF 

Rate 

HRF 

LM6 75.5 78.3 74 74.8 75 75.52 

LM6/MW 95.1 94.8 93.9 95.5 94 94.66 

LM6/GO 92.8 98 93.1 94.5 95 94.68 



 

 

 

 

 

 

hardness is because of C carbon in MW particles and GO particles. The nano-carbon elements with GO 

are the source of the high hardness of GO. However, MW can be captured using CaO calcium oxide as 

a carbon sorbent. At temperatures ranging from 550 to 800 °C, this sorbent also demonstrated nearly 

100% carbonation[20]. 

An impact test is needed to determine the absorbed energy required to break the composite material. 

The impact examination for all specimens is depicted in figure 6. The energy absorption rate in 

LM6/MW increased by 19%, while it increased by approximately 36% in LM6/GO. This means that the 

addition of particles (marble waste and graphene oxide) to the aluminum/LM6 composites increased the 

absorbed energy necessary to break the material. It also denotes the increased toughness of the new 

composites that resulted. 

 
Figure 6 Impact test for LM6, LM6/MW and LM6/GO composites. 

The particles that reinforced aluminum alloy /LM6 are the obvious cause of this rise in the ductility of 

composite materials. Because of the nanoparticle scale, graphene oxide outperformed on marble 

waste. 

The failure of LM6 alumnium alloy samples reinforced with 5% MW and GO was extensively 

investigated to identify the causes of failure in tensile test samples as shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 SEM tensile fracture surface of (a) LM6/MW (b) LM6/GO composites. 

Cracks, some porosities, and a small agglomeration of LM6/MW composite were discovered. The 

tensile fracture surface in the LM6/MW specimens was not observed in the MW particles. MW particles 

had not started to fracture. However, the fracture due to matrix cracking, matrix cavitation, and interface 

decohesion and rupture, as shown in figure 7(a). Tensile loading fractures are ductile. Because of the 

high stresses and plastic zone that forms ahead of the crack edge, the mechanisms of damage 



 

 

 

 

 

 

accumulation and crack propagation vary. According to the most commonly accepted mechanism, 

microcracking occurs ahead of the crack tip as a result of matrix void formation within particle clusters 

as well as particle fracture and decohesion[21]. There is no void forming or debonding at the matrix–

reinforcement interface in LM6/GO.  Strengthened matrix–reinforcement interfacial bonding, although 

there is no debonding. Consequently, the failure tends to be caused by the accumulation of internal 

damage caused by matrix material deformation. This failure mechanism introduces voids that expand 

and lead to reduced ductility, which has played an important role in the tensile test. As it appeared, the 

tensile strengths increased with the nanoscale of the GO particles. This is due to an increase in the 

number of particles per unit area of LM6. As particle size decreases, the number of particles per unit 

area increases, making it achieve homogeneous particle distribution, resulting in difficulty creating 

preferential sites for crack formation and propagation, as shown in figure7(b). 

5. Conclusion 

The laboratory's modern microstructural analysis equipment was used to successfully synthesize and 

characterize LM6/MW and LM6/GO composites using a modified stir casting process. To create 

composites specimens, a squeeze stir casting machine was used. The results demonstrated grapheme 

oxide's superiority over marble wastes, with the UTS increasing by 45% in GO and 16% in MW. The 

Rockwell hardness of both composite materials was determined. More than a quarter of the hardness of 

the LM6 alloy material. The impact test rate in LM6/MW increased by 19%, while it increased by 36% 

in LM6/GO. The matrix was homogeneously distributed with marble waste and graphene oxide 

particles, and a strong bond was formed between the aluminum and the reinforced partition. The 

particles did not have a tensile fracture surface in the LM6/MW or LM6/GO specimens. The particles 

had not begun to fracture yet. However, the fracture caused by matrix cracking, matrix cavitation, and 

interface decohesion and rupture. 
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