Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis

Abdi M.², Pasbakhsh P.², Shabani M.³, Nekoonam S.², Sadeghi A.⁵, Fathi F.⁴, AbouzariPour M.⁵, Mohamed W.⁶, Zibara K.⁷, Kashani I.R.⁸, Zendedel A.¹

¹ Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
² Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
³ Department of Clinical Biochemistry, Faculty of medicine, Kerman University of Medical Sciences, Kerman, Iran
⁴ Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

Cited by 0 documents

Related documents

Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrocytogenesis during brain self-repairing period

Investigation of Cuprizone Inactivation by Temperature

Microglia polarization by methylprednisolone acetate accelerates cuprizone induced demyelination

Find more related documents in Scopus based on:
Authors ➤ Keywords ➤

Full text options ➤

Abstract

Author keywords
Abstract
Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS. © 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Author keywords
Cuprizone; Metformin; Microglia activity; Multiple sclerosis; Neuroinflammation; NF-κB

Reaxys Chemistry database information

Substances

Powered by Reaxys

SciVal Topics

Metrics

Funding details

References (91)
1. Adilijiang, A., Guan, T., He, J., Hartle, K., Wang, W., Li, X.
 The protective effects of areca catechu extract on cognition and social interaction deficits in a cuprizone-induced demyelination model (Open Access)
 http://www.hindawi.com/journals/ecam/contents.html
 doi: 10.1155/2015/426092
 View at Publisher

 Metformin reduces endogenous reactive oxygen species and associated DNA damage
 http://cancerpreventionresearch.aacrjournals.org/content/5/4/536.full.pdf+html
 View at Publisher

3. Amende, I., Kale, A., McCue, S., Glazer, S., Morgan, J.P., Hampton, T.G.
 Gait dynamics in mouse models of Parkinson's disease and Huntington's disease (Open Access)
 View at Publisher

 Metformin reverses early cortical network dysfunction and behavior changes in Huntington's disease (Open Access)
 https://elifesciences.org/download/aHR0cHM6Ly9zZG4uZWxpZmVzY2libnNlcy5wcmcvYXJoWVNzZXVzMzg3NDQvZWxpZmUtMzg3NDQtL1MuGRtm/eLife-38744-v3.pdf?...hash=bkJDMnOs2BwBP5mpwWE6pd%2F25Pm6wQ0V6RcQs7uaS%3D
 doi: 10.7554/eLife.38744
 View at Publisher

 Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLPR3 inflammasome in a cuprizone-induced demyelination mouse model
 www.elsevier.com/locate/ijtmp
 doi: 10.1016/j.intimp.2017.08.007
 View at Publisher
Progestrone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model
www.elsevier.com/locate/intimp
doi: 10.1016/j.intimp.2017.08.007
View at Publisher

7 Aryanpour, R., Zibara, K., Pasbakhsh, P., Jameei, S.B., Namjoo, Z., Ghanbari, A., Mahmoudi, R., (...), Kashani, I.R.
17ß-Estradiol Reduces Demyelination in Cuprizone-fed Mice by Promoting M2 Microglia Polarity and Regulating NLRP3 Inflammasome
www.elsevier.com/locate/neuroscience
doi: 10.1016/j.neuroscience.2021.03.025
View at Publisher

8 Barati, S., Ragerdi Kashani, I., Moradi, F., Tahmasebi, F., Mehrabi, S., Barati, M., Joghtaeei, M.T.
Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model
doi: 10.1002/jcb.28670
View at Publisher

9 Bernardes, D., Oliveira, A.L.R.
Comprehensive catwalk gait analysis in a chronic model of multiple sclerosis subjected to treadmill exercise training
(Open Access)
http://www.biomedcentral.com/bmccneurol/
doi: 10.1186/s12883-017-0941-z
View at Publisher

10 Bonetti, B., Stepagno, C., Moretto, G., Rizzuto, N., Cannella, B., Raine, C.
Localization of NFκB in multiple sclerosis lesions: implications for oligodendrocyte damage

11 Brousse, B., Mercier, O., Magalon, K., Daian, F., Durbec, P., Cayre, M.
Endogenous neural stem cells modulate microglia and protect against demyelination
(Open Access)
(2021) *Stem Cell Reports*, 16 (7), pp. 1792-1804.
http://www.elsevier.com/journals/stem-cell-reports/2213-6711
doi: 10.1016/j.stemcr.2021.05.002
View at Publisher
Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination (Open Access)
doi: 10.1007/s00401-012-1099-1
View at Publisher

13. Cai, Z., Hussain, M.D., Yan, L.-J.
Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease
www.tandf.co.uk/journals/titles/00207454.asp
View at Publisher

TREM2 regulates microglial cell activation in response to demyelination in vivo (Open Access)
link.springer.de/link/service/journals/00401/index.htm
doi: 10.1007/s00401-015-1388-1
View at Publisher

15. Cherry, J.D., Olschowka, J.A., O'Banion, M.K.
Neuroinflammation and M2 microglia: The good, the bad, and the inflamed (Open Access)
http://www.jneuroinflammation.com/content/11/1/98
View at Publisher

The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis
www.elsevier.com/locate/jneuroim
doi: 10.1016/j.jneuroim.2018.02.015
View at Publisher

TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis (Open Access)
link.springer.de/link/service/journals/00401/index.htm
doi: 10.1007/s00401-020-02193-z
View at Publisher
Citraro, R., Leo, A., Constanti, A., Russo, E., De Sarro, G.
MTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis (Open Access)

doi: 10.1016/j.phrs.2016.03.039

View at Publisher

Dendrou, C.A., Fugger, L., Friese, M.A.
Immunopathology of multiple sclerosis

doi: 10.1038/nri3871

View at Publisher

Devanney, N.A., Stewart, A.N., Gensel, J.C.
Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma (Open Access)

View at Publisher

Elbaz, E.M., Senousy, M.A., El-Tanbouly, D.M., Sayed, R.H.
Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: A pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-kB signalling pathway modulation

doi: 10.1016/j.taap.2018.05.035

View at Publisher

Elbaz, E.M., Senousy, M.A., El-Tanbouly, D.M., Sayed, R.H.
Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: A pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-kB signalling pathway modulation

doi: 10.1016/j.taap.2018.05.035

View at Publisher
Goldberg, J., Clarner, T., Beyer, C., Kipp, M.
Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice

http://www.springer.com/humana-press/journal/12031

View at Publisher

Groebe, A., Clarner, T., Baumgartner, W., Dang, J., Beyer, C., Kipp, M.
Cuprizone treatment induces distinct demyelination, astrocytosis, and microglial cell invasion or proliferation in the mouse cerebellum

doi: 10.1007/s12311-009-0099-3

View at Publisher

Gudi, V., Gingele, S., Skripuletz, T., Stangel, M.
Glial response during cuprizone-induced de- and remyelination in the CNS: Lessons learned (Open Access)

doi: 10.3389/fncel.2014.00073

View at Publisher

Guerrero, B.L., Sicotte, N.L.
Microglia in Multiple Sclerosis: Friend or Foe? (Open Access)

https://www.frontiersin.org/Journals/immunology#

View at Publisher

Gveric, D., Kaltschmidt, C., Cuzner, M.L., Newcombe, J.
Transcription factor NF-κB and inhibitor IκBα are localized in macrophages in active multiple sclerosis lesions (Open Access)

http://journals.lww.com/neuropath
doi: 10.1097/00005072-199802000-00008

View at Publisher

Hattori, Y., Suzuki, K., Hattori, S., Kasai, K.
Metformin inhibits cytokine-induced nuclear factor NFκB activation via AMP-activated protein kinase activation in vascular endothelial cells (Open Access)

doi: 10.1161/01.HYP.0000221429.94591.72

View at Publisher
Houshmand, F., Barati, M., Golab, F., Ramezani-sefidar, S., Tanbakooie, S., Tabatabaei, M., Amiri, M., (..), Sanadgol, N.

Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis (Open Access)

https://rd.springer.com/journal/40199
doi: 10.1007/s40199-019-00286-z
View at Publisher

Houshmand, F., Barati, M., Golab, F., Ramezani-sefidar, S., Tanbakooie, S., Tabatabaei, M., Amiri, M., (..), Sanadgol, N.

Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis (Open Access)

https://rd.springer.com/journal/40199
doi: 10.1007/s40199-019-00286-z
View at Publisher

Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus

View at Publisher

Gamma frequency entrainment attenuates amyloid load and modifies microglia (Open Access)

http://www.nature.com/nature/index.html
doi: 10.1038/nature20587
View at Publisher

Jeon, S.-M.

Regulation and function of AMPK in physiology and diseases (Open Access)

doi: 10.1038/emm.2016.81
View at Publisher
34. Jha, M.K., Lee, W.-H., Suk, K.
 Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders
 www.elsevier.com/locate/biochempharm
 doi: 10.1016/j.bcp.2015.11.003
 View at Publisher

 Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke
 http://www.elsevier.com/locate/brainbeh
 doi: 10.1016/j.bbi.2014.03.003
 View at Publisher

36. Jing, Y., Wu, F., Li, D., Yang, L., Li, Q., Li, R.
 Metformin improves obesity-associated inflammation by altering macrophages polarization
 www.elsevier.com/locate/mce
 View at Publisher

37. Kheirandish, M., Mahboobi, H., Yazdanparast, M., Kamal, W., Kamal, M.A.
 Anti-cancer effects of metformin: Recent evidences for its role in prevention and treatment of cancer
 http://www.eurekaselect.com/161323
 doi: 10.2174/1389200219666180416161846
 View at Publisher

38. Kim, J., Kundu, M., Viollet, B., Guan, K.L.
 AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 (Open Access)
 doi: 10.1038/ncb2152
 View at Publisher

39. Kim, J., Yang, G., Kim, Y., Kim, J., Ha, J.
 AMPK activators: Mechanisms of action and physiological activities (Open Access)
 (2016) Experimental and Molecular Medicine, 48 (4), art. no. e224. Cited 295 times.
 http://www.nature.com/pjpress_releases/emm-relaunch.html
 doi: 10.1038/emm.2016.16
 View at Publisher
Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus (Open Access)

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2157-9032
doi: 10.1002/bbr3.1388

View at Publisher

Kipp, M., Clarner, T., Dang, J., Copray, S., Beyer, C.
The cuprizone animal model: New insights into an old story

doi: 10.1007/s00401-009-0591-3

View at Publisher

Kiriya, Y., Nochi, H.
The function of autophagy in neurodegenerative diseases (Open Access)

doi: 10.3390/ijms161125990

View at Publisher

Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation

(2020) Experimental Neurology, 334, art. no. 113454.

View at Publisher

Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model

http://www.kluweronline.com/issn/1567-2379/
doi: 10.1007/s10735-019-09824-0

View at Publisher
45 Lassmann, H.
Multiple sclerosis pathology (Open Access)
(2018) Cold Spring Harbor Perspectives in Medicine, 8 (3), art. no. a028936. Cited 183 times.
http://perspectivesinmedicine.cshlp.org/content/8/3/a028936.full.pdf
doi: 10.1101/cshperspect.a028936
View at Publisher

46 Lassmann, H., Van Horsen, J., Mahad, D.
Progressive multiple sclerosis: Pathology and pathogenesis
http://www.nature.com/nrneurol/archive/index.html
doi: 10.1038/nrneurol.2012.168
View at Publisher

Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome (Open Access)
doi: 10.1056/NEJMoa063971
View at Publisher

48 Li, J., Deng, J., Sheng, W., Zuo, Z.
Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice (Open Access)
doi: 10.1016/j.pbb.2012.03.002
View at Publisher

49 Lu, M., Su, C., Qiao, C., Bian, Y., Ding, J., Hu, G.
Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS clearance (Open Access)
http://ijnp.oxfordjournals.org/
doi: 10.1093/ijnp/pyw047
View at Publisher

The role of microglia in multiple sclerosis (Open Access)
doi: 10.2147/NDT.S140634
View at Publisher
Manwani, B., McCullough, L.D.
Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke (Open Access)
doi: 10.1002/jnr.23207
View at Publisher

McGuire, C., Prinz, M., Beyaert, R., van Loo, G.
Nuclear factor kappa B (NF-kB) in multiple sclerosis pathology
doi: 10.1016/j.molmed.2013.08.001
View at Publisher

Memmott, R.M., Mercado, J.R., Maier, C.R., Kawabata, S., Fox, S.D., Dennis, P.A.
Metformin prevents tobacco carcinogen-induced lung tumorigenesis (Open Access)
http://cancerpreventionresearch.aacrjournals.org/content/3/9/1066.full.pdf

doi: 10.1158/1940-6207.CAPR-10-0055
View at Publisher

Nakagawa, Y., Chiba, K.
Diversity and plasticity of microglial cells in psychiatric and neurological disorders
www.elsevier.com/locate/pharmthera
doi: 10.1016/j.pharmthera.2015.06.010
View at Publisher

Nakatake, R., Iida, H., Ishizaki, M., Matsui, K., Nakamura, Y., Kaibori, M., Nishizawa, M., (...), Okumura, T.
Metformin inhibits expression of the proinflammatory biomarker inducible nitric oxide synthase in hepatocytes (Open Access)

doi: 10.31989/ffhd.v8i3.423
View at Publisher

Nath, N., Khan, M., Prattia, M.K., Hoda, Md.N., Giri, S.
Metformin attenuates the autoimmune disease of the central nervous system in animal models of multiple sclerosis (Open Access)
http://www.jimmunol.org/cgi/reprint/182/12/8005

doi: 10.4049/jimmunol.0803563
View at Publisher
Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis (Open Access)

http://www.jimmunol.org/cgi/reprint/182/12/8005
doi: 10.4049/jimmunol.0803563

View at Publisher

58. Nath, N., Khan, M., Rattan, R., Mangalam, A., Makkar, R.S., Meester, C.d., Bertrand, Lr., (...), Giri, S.
Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity (Open Access)

doi: 10.1016/j.bbrc.2009.05.106

View at Publisher

59. Negrotto, L., Farez, M.F., Correale, J.
Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis (Open Access)

doi: 10.1001/jamaneurol.2015.4807

View at Publisher

60. Neumann, H., Takahashi, K.
Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis

doi: 10.1016/j.jneuroim.2006.11.032

View at Publisher

G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models

http://www.springer.com/biomed/neuroscience/journal/12035
doi: 10.1007/s12035-018-1146-1

View at Publisher

62. Orihuela, R., McPherson, C.A., Harry, G.J.
Microglial M1/M2 polarization and metabolic states (Open Access)

doi: 10.1111/bph.13139

View at Publisher
AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model (Open Access)

View at Publisher

AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration

http://www.elsevier.com/jrnl/publications/store/6/2/7/2/8/2/1/index.htm
doi: 10.1016/j.expneurol.2017.08.013

View at Publisher

Pott, F., Gingele, S., Clarner, T., Dang, J., Baumgartner, W., Beyer, C., Kipp, M.
Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia

www.elsevier.com/locate/brainres

View at Publisher

Praet, J., Guglielmetti, C., Bememan, Z., Van der Linden, A., Ponsaerts, P.
Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis (Open Access)

www.elsevier.com/locate/neubiorev
doi: 10.1016/j.neubiorev.2014.10.004

View at Publisher

Metformin induces the m2 macrophage polarization to accelerate the wound healing via regulating ampk/ mtor/nlrp3 inflammasome singling pathway

Sajó, K., Glass, C.K.
Microglial cell origin and phenotypes in health and disease

doi: 10.1038/nri3086

View at Publisher
69 Salminen, A., Hyttinen, J.M.T., Kaamrinanta, K.
AMP-activated protein kinase inhibits NF-kB signaling and inflammation: Impact on healthspan and lifespan (Open Access)

doi: 10.1007/s00109-011-0748-0
View at Publisher

70 Sanadgol, N., Barati, M., Houshand, F., Hassani, S., Clarner, T., shahlaei, M., Golab, F.
Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period

https://link.springer.com/journal/43440
doi: 10.1007/s43440-019-00019-8
View at Publisher

71 Sanadgol, N., Barati, M., Houshand, F., Hassani, S., Clarner, T., shahlaei, M., Golab, F.
Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period

https://link.springer.com/journal/43440
doi: 10.1007/s43440-019-00019-8
View at Publisher

72 Sanadgol, N., Golab, F., Mostafa, A., Mehdiad, M., Khalseh, R., Mahmoudi, M., Abdollahi, M., (...), Sharifzadeh, M.
Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-kB activation and acceleration of intrinsic myelin repair

http://www.elsevier.com/inca/publications/store/6/2/2/9/5/1/index.htm
doi: 10.1016/j.taap.2018.01.023
View at Publisher

73 Sanchez-Guijardo, V., Tentilier, N., Romero-Ramos, M.
The relation between α-synuclein and microglia in Parkinson’s disease: Recent developments

www.elsevier.com/locate/neuroscience
doi: 10.1016/j.neuroscience.2015.02.008
View at Publisher
74 Sinivasan, M., Lahiri, D.K.
Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis (Open Access)

doi: 10.1517/14728222.2014.989834
View at Publisher

75 Sun, J., Huang, N., Ma, W., Zhou, H., Lai, K.
Protective effects of metformin on lipopolysaccharide-induced airway epithelial cell injury via NF-κB signaling inhibition (Open Access)

https://www.spsandos-publications.com/mmr/19/3/1809/download
doi: 10.3892/mmr.2019.9807
View at Publisher

76 Sun, Y., Tian, T., Gao, J., Liu, X., Hou, H., Gao, R., Li, B., (...), Guo, L.
Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice

www.elsevier.com/locate/neoimm

doi: 10.1016/j.jneuroim.2016.01.014
View at Publisher

77 Tang, Y., Le, W.
Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases

http://www.springer.com/biomed/neuroscience/journal/12035
doi: 10.1007/s12035-014-9070-5
View at Publisher

Divergent effects of metformin on an inflammatory model of Parkinson's disease (Open Access)

doi: 10.3389/fncel.2018.00440
View at Publisher

79 Torildsen, Ø., Brunborg, L.A., Myhr, K.-M., Øst, L.
The cuprizone model for demyelination

View at Publisher
Five decades of cuprizone, an updated model to replicate demyelinating diseases (Open Access)

doi: 10.2174/1570159X15666170717120343

View at Publisher

Pasbakhsh, P.; Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran; email: pasbakhsh@sina.tums.ac.ir
Zibara, K.; PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon; email: kzbara@ul.edu.lb
© Copyright 2021 Elsevier B.V., All rights reserved.