Reliability of Electrocardiogram Signals during Feature Extraction Stage for Smart Textile Shirts
DOI: 10.1088/1742-6596/2071/1/012043

Abstract
Wearable smart textiles have garnered significant interest due to their high flexibility, reusability, convenience and ability to work on home-based, real-life and real-time monitoring. Wearable smart textiles are shirts with inbuilt textile sensors that enable electrocardiogram (ECG) data to be collected more comfortably and smoothly outside the laboratory and clinical environment for a continuous and longer duration for ECG data collection. However, the existing ECG wearable smart textile main challenge is maintaining the quality and reliability of data across multiple wearable smart textile shirts. Therefore, this research analyses the capability of ECG morphology during Feature Extraction stages for different wearable smart textile shirts. This paper reports the experiment conducted on eleven healthy volunteers, either wearing the Hexoskin smart shirt or the HeartIn Fit shirt or both. ECG data were recorded while they are doing normal daily routine activities for at least 45 minutes. The study demonstrates a significant possibility of reliability in Feature Extraction stages at different time instances among subject and wearable smart textiles shirts. With R peaks average between 0.543 to 1.194 mV and R-R interval average between 0.625 to 0.799 seconds, the study concludes that both wearable smart textiles do not significantly differ in Feature Extraction stages. Thus, both wearable smart textiles gave a significant result, although both are affected by their wearer's motion artefacts during the shifting of body postures and the wearer's body physical states. Furthermore, the ECG morphology in this study has yielded a promising result in real life and as on-the-go ECG smart textile biometric readiness for future explorations. © 2021 Institute of Physics Publishing. All rights reserved.

Author Keywords
ECG; Feature Extraction; Smart textile; Wearable

Index Keywords
Biomedical signal processing, Electrocardiography, Extraction, Morphology, Reliability, Reusability, Smart textiles, Wearable technology; Clinical environments, Electrocardiogram signal, Features extraction, High flexibility, Home-based, Laboratory environment, Life-times, Long duration, Real time monitoring, Textile sensors; Feature extraction

References
• Pinto, J R, Cardoso, J S
 Explaining ECG Biometrics: Is It All In The QRS?

• Lehmann, F, Buschek, D

• Elshahed, M A
 Personal identity verification based ECG biometric using non-fiducial features

• Kyoso, M, Uchiyama, A
Istanbul, Turkey

- Biel, L, Pettersson, O, Philipson, L, Wide, P
 ECG analysis: A new approach in human identification

- Ribeiro Pinto, J, Cardoso, J S, Lourenco, A
 Evolution, current challenges, and future possibilities in ECG

- Fouassier, D, Roy, X, Blanchard, A, Hulot, J S
 Assessment of signal quality measured with a smart 12-lead ECG acquisition T-shirt
 Ann

- Fukuma, N
 Feasibility of a T-Shirt-Type Wearable Electrocardiography Monitor for Detection of
 Covert Atrial Fibrillation in Young Healthy Adults

- Tsukada, Y T
 Validation of wearable textile electrodes for ECG monitoring

- Smith, C M, Chillrud, S N, Jack, D W, Kinney, P, Yang, Q, Layton, A M
 Laboratory Validation of Hexoskin Biometric Shirt at Rest, Submaximal Exercise, and
 Maximal Exercise while Riding a Stationary Bicycle

- Haddad, M
 Ecological Validation and Reliability of Hexoskin Wearable Body Metrics Tool in
 Measuring Pre-exercise and Peak Heart Rate During Shuttle Run Test in
 Professional Handball Players Front

- Elliot, C A, Hamlin, M J, Lizamore, C A
 Validity and Reliability of the Hexoskin Wearable Biometric Vest during Maximal
 Aerobic Power Testing in Elite Cyclists

- Banerjee, T, Peterson, M, Oliver, Q, Froehle, A, Lawhorne, L
 Validating a commercial device for continuous activity measurement in the older
 adult population for dementia management

- Tanner, E A
 Validation of Hexoskin biometric shirt to COSMED K4 b2 metabolic unit in adults
 during trail running

- Montes, J, Young, J C, Tandy, R, Navalta, J W
 Reliability and Validation of the Hexoskin Wearable Bio-Collection Device During
 Walking Conditions
- Tan, D Y W, Yong, T H

 Suitability of smartshirt by Hexoskin to monitor heart rate for racket sports in
 International Conference on Robotics

- Iqbal, S M A, Mahgoub, I, Du, E, Leavitt, M A, Asghar, W

 Advances in healthcare wearable devices npj Flex

- Tseng, K, Li, J, Tang, Y, Yang, C, Lin, F

 Clustering Analysis of Aging Diseases and Chronic Habits With Multivariate Time
 Series Electrocardiogram and Medical Records Front
 (2020) Aging Neurosci, 12.

- Seshadri, D R

 Wearable sensors for monitoring the internal and external workload of the athlete
 npj

- Crawford, J, Doherty, L

 (2012) Practical Aspects of ECG Recording M & K Update Limited,

- Krasteva, V, Jekova, I, Abächerli, R

 Biometric verification by cross-correlation analysis of 12-lead ECG patterns:
 Ranking of the most reliable peripheral and chest leads

 Kirigami-Inspired Textile Electronics

- Soroudi, A, Hernández, N, Berglin, L, Nierstrasz, V

 Electrode placement in electrocardiography smart garments: A review

- Di Rienzo, M

 Textile technology for the vital signs monitoring in telemedicine and extreme
 environments