CRASH ANALYSIS OF COMPOSITE AIRCRAFT FUSELAGE UNDER BELLY LANDING

SHARIFAH NADHIRAH BINTI SYED ABD RAHMAN ALQUDSY

DR.JAFFAR SYED MOHAMED ALI,

DR.MOHAMED SULTAN IBRAHIM SHAI DAWOOD

INTRODUCTION

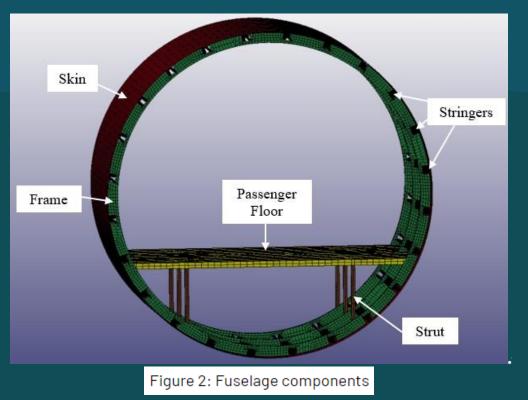
Belly landing crashes:Mechanical failureHuman error

Fuselage:Main body of an aircraftProtects passenger

Figure 1: UTair Airlines Boeing 737 hard landing at Usinsk Airport. February 9, 2020¹

PROBLEM STATEMENT

- Aircraft structures are designed for crash survival under belly landing.
- \succ Too risky and expensive to do full-scale drop test.
- Need to use Finite Element Analysis (FEA) LS-DYNA to do
 - simulation of crash under belly landing.
 - Can be computationally demanding



OBJECTIVES

- ★ To study and analyse the energy absorption of the fuselage under belly landing.
- To study the effect of composite structure on energy absorption.
 - ★ To conduct parametric studies on the effect of different velocities, terrains and materials.

METHODOLOGY

Fuselage Modelling

Length: 1 m Skin, frames, stringers' thickness: 0.2 cm

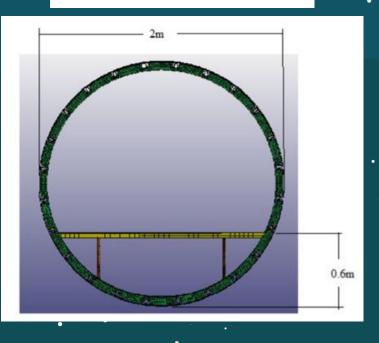


Figure 3: Fuselage dimensions

Material Selection

Aluminium Materials

- MAT_098 (simplified johnson-cook) were used for skin, frames, stringers and struts
- MAT_003 (plastic kinematic) were used for passenger floor

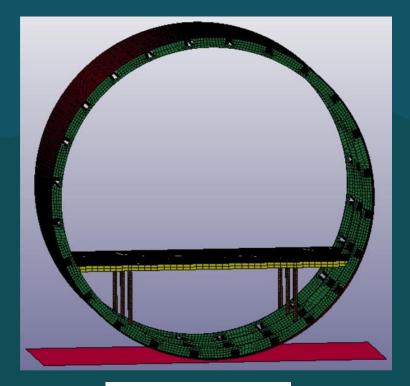
Table 1: Aluminium material properties		
Components	Density (kg/m³)	Elastic Modulus (GPa)
Skin	2796	71
Frame	2796	71
Stringer	2796	71
Strut	2796	71
Passenger Floor	2990	18

Material Selection

Composite Materials

• MAT_054 (enhanced composite damage) were used

•


Table 2: Carbon fiber material properties		
Properties	Value	
Density (kg/m ³)	1570	
Young's modulus - longitudinal direction, E1 (GPa)	135	
Young's modulus - longitudinal direction, E2 (GPa)	8.8	
Poisson's ratio, μ_{12} (GPa)	0.2	
Shear modulus of elasticity, G12 (GPa)	4.47	
Longitudinal tensile strength, Xt (GPa)	1.548	
Longitudinal compressive strength, Xc (GPa)	1.226	
Transverse tensile strength, Y_c (GPa)	0.218	
Transverse compressive strength, Y_t (GPa)	0.0555	
Shear strength, G ₁₂ (GPa)	0.0899	

Composite Skin Laminates (8 layers)

Antisymmetric Cross Ply	Unidirectional	
 [0/90/0/90/0/90/0/90] 	0° 60° 30° 90° 45°	
Antisymmetric Angle Ply	<u>Symmetric Quasi-Isotropic</u>	
 [30/-30/30/-30/30/-30/30/-30] [45/-45/45/-45/45/-45/45/-45] [60/-60/60/-60/60/-60/60/-60] 	● [90/45/0/-45]s	

Terrain Modelling

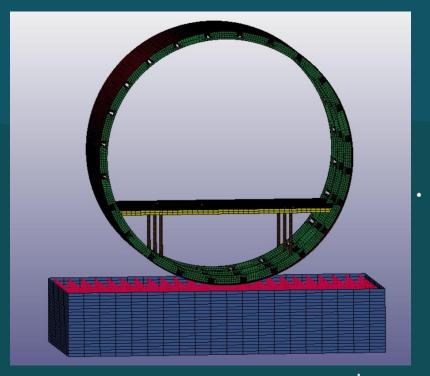
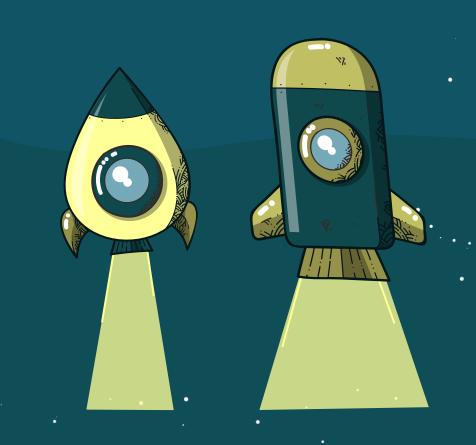
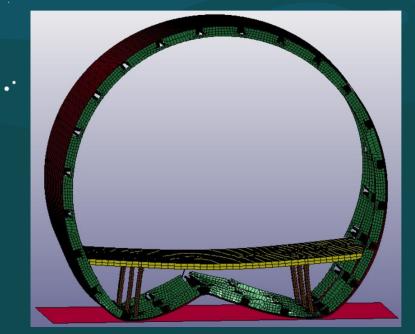



Figure 5: Water surface

Boundary Condition

Two different velocities:


- 7 m/s
- 10 m/s

•

RESULTS

• Validation on aluminium fuselage drop test on the ground

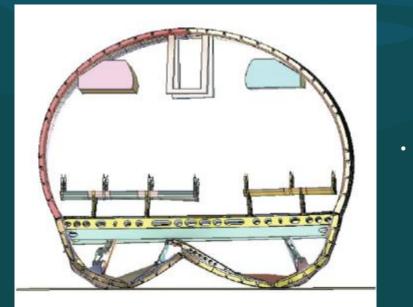


Figure 6: After dropped

Figure 7: Deformation after impact²

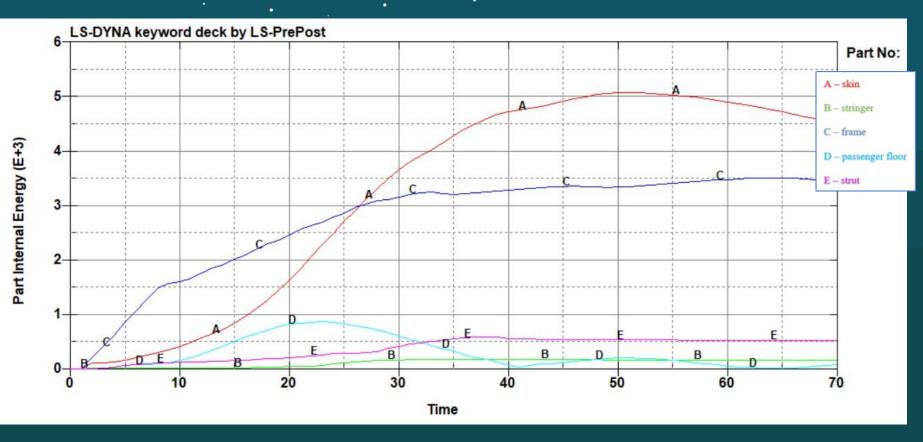
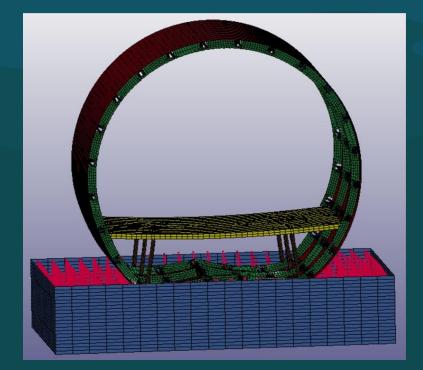



Figure 8: Graph of part internal energy for aluminium fuselage with impact velocity of 10 m/s

• Validation on aluminium fuselage drop test on water

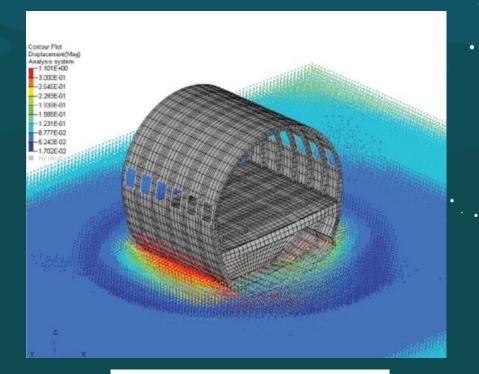
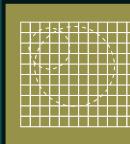


Figure 10: Behaviour of fuselage section³

Figure 9: After dropped


RESULTS

For composite skin laminates

• • • •

Unidirectional Laminates

Energy absorption comparison

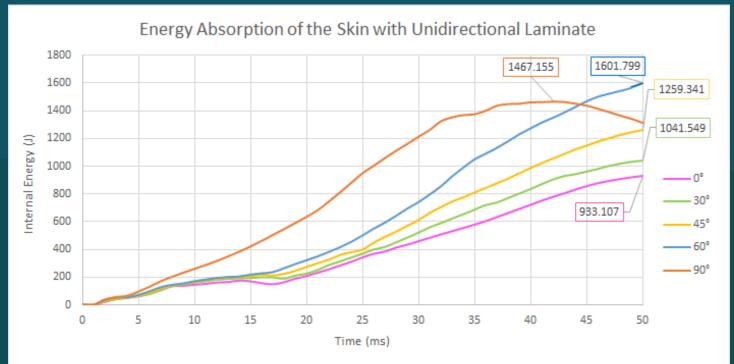
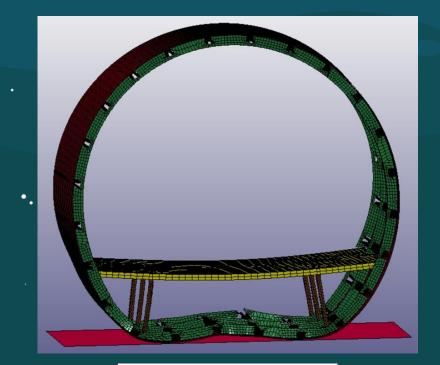



Figure 15: Graph of internal energy of the skin for unidirectional laminates

Effect of different materials

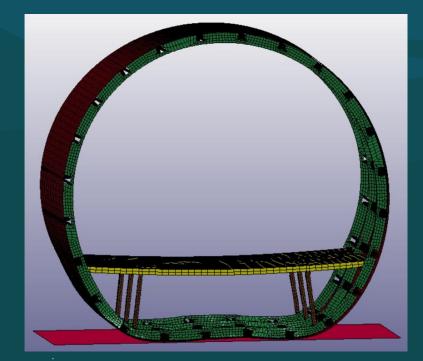


Figure 23: Composite fuselage

CONCLUSION

≻ Aluminium vs composite

- Aluminium absorbs higher energy than carbon fiber
- ≻ Aluminium fuselage
 - Energy absorption varies in different parameters.
 - Frames and skin absorbs the most energy.
 - ≻ Composite fuselage
 - Frames absorbs the most energy followed by the skin, the passenger floor, struts and stringers.
 - Symmetric quasi-isotropic laminates have a good energy absorbing process.

REFERENCES

- 1. Afp. (2020, February 09). Russian plane in belly landing, no one hurt: New Straits Times. Retrieved June 16, 2020, from https://www.nst.com.my/world/world/2020/02/564058/russian-plane-belly-landing-no-one-hurt
- Liu, X., Guo, J., Bai, C., Sun, X., & Mou, R. (2015). Drop test and crash simulation of a civil airplane fuselage section. Chinese Journal of Aeronautics, 28(2), 447–456. https://doi.org/10.1016/j.cja.2015.01.007
- 3. Tay, Y. Y., Bhonge, P. S., & Lankarani, H. M. (2015). Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact. 8265(September). https://doi.org/10.1080/13588265.2015.1033972
- 4. Gransden, D. I., & Alderliesten, R. (2017). Development of a finite element model for comparing metal and composite fuselage section drop testing. International Journal of Crashworthiness, 22(4), 401–414. <u>https://doi.org/10.1080/13588265.2016.1273987</u>
- 5. Ali, J.S., & Hasfareeza, M.Y. (2018). Crash Analysis of an Aircraft Fuselage under Belly Landing.
- 6. Mou, H., Zou, T., Feng, Z., & Ren, J. (2014). Crashworthiness simulation research of fuselage section with composite skin. Procedia Engineering, 80, 59–65. https://doi.org/10.1016/j.proeng.2014.09.060