

AN INTERNATIONAL AWARD-WINNING INSTITUTION FOR SUSTAINABILITY

Exploring the potential of *Etlingera elatior* (torch ginger) as ornamental, medicinal plant, and food products

The International Conference on Underutilized Crop (ICUC) 27-28 October 2021 Universitas Brawijaya, Indonesia

Dr. Muhamad Fahmi Yunus

International Islamic University Malaysia

Outlines

- Introduction
- Economic Potential
- Products Development
- Challenges and Future Perspectives
- Conclusion

Introduction

- *Etlingera elatior* (torch ginger) is a plant in the Zingiberaceae family that is widely cultivated in Southeast Asia for **ornamental purposes** or consumed as **food**.
- This plant is known as torch ginger due to the striking resemblance of the **inflorescence** to a **flaming torch**.
- The vernacular names for torch ginger are *Bunga Kantan* (Malaysia), *Bunga Kecombrang* (Indonesia), *Kaa Laa* (Thailand) and *Rosa-De-Porcelana* (Brazil).

Introduction

- Zingiberaceae family is **resilient** to **climate change** with high adaptability towards different growing conditions.
- Majority of the *Etlingera* species lack ornamental value due to their short vase-life span.
- Torch ginger is one of the most known species of *Etlingera*.

Inflorescence

• Butterflies, Amegilla bees, stingless bees (*Tetragonula iridipennis*), and sunbirds (*Nectarinia asiatica* and *N. zeylonica*) have all been spotted pollinating this species. (Aswani et al., 2013).

Traditional Uses

- In Malaysia and Southern Thailand, the young inflorescences are used as **herbs and food ingredients**. The extract from the stem is used to **reduce swelling**, while **decoctions** of the leaves are used to **clean wounds**. Post-partum women also use the **leaves for bathing** to remove **body odor** and wound cleaning.
- In Malaysia and Indonesia, the fruits are also used to **treat earaches**, **diarrhea**, **coughs**, **mouth sores**, **and increase human appetite** (Ismail et al., 2019; Sabilu et al., 2017).
- In Indonesia, the pseudostems were blended and filtered to get the liquid and served to treat the **typhoid fever patient**.

Culinary

- Young inflorescences and half-ripe fruiting shoots are widely used as an ingredient in traditional Malaysian cuisines such as Penang *laksa, nasi ulam, nasi kerabu* and mixed vegetables.
- In North Sumatra, the flower buds and the ripe seed pods containing tiny black seeds are used for **cooking fish dishes**.

Nasi Kerabu, Malaysia

Chili Sauce (Sambel Kecombrang) Bali, Indonesia

ECONOMIC POTENTIAL

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Malaysia National Agrofood Policy 2011-2020

5 Specific Industries (SI)

1. Paddy & Rice

- 2. Fruits
- 3. Fisheries
- 4. Livestock
- 5. Vegetables
- 6. Coconuts
- 7. Swiftlets

10.Seaweed

12.Floriculture

13.Mushrooms

15.Agrotourism

- 8. Aquaculture
- 9. Ornamental Fishes

11.Herbs and Spices

14.Agro-based Food

• One of the 11 potential herbs to be commercialized.

• Production of herbal plants in Malaysia for 2018 has reached a good value of MYR 69 million (USD 17 million).

(Department of Agriculture, 2018).

Economic Importance

	2014	2016	2018
Production (metric tons)	905.07	1281.44	1,787.13
Planting area (ha)	178.31	250.34	356.18

• The average yield of this plant was reported at 6.06 mt/ha, with an overall production value of MYR 9.83 million (USD 2.4 million).

(Department of Agriculture, 2018).

Ornamental

• The varying shades of white, pink, and red colors of the bracts and flowers make this species an attractive ornamental plant.

Different bract color of torch ginger. A: dark pink (KAN024); B: pink (KAN035); C: pale pink (KAN031) (Ismail et al., 2021)

Ornamental value

Etlingera elatior 'Bloody mary'

Etlingera elatior 'James Red'

Bamboo Land, 2021

Bamboo Land, 2021

Ornamental

Etlingera elatior 'Light pink'

Etlingera elatior 'Thai White'

Bamboo Land, 2021

Bamboo Land, 2021

Ornamental value

Aloha Tropicals, 2021

Bamboo Land, 2021

Development of New Cultivars through Breeding Programme

• In response to the floriculturist demand, extensive research being conducted, leading to more variation in the range of colours, shapes, yield, and extending vase-life.

• Attempt to create a **hybrid** was performed to broaden its **genetic variation**, but it remains a challenging process.

Yields

- Cultivars show good yields:
 - Tropicas: 150-200 flower stems/clump/year
 - Thai White: 100-120 flower stems/clump/year
 - Ironstone: 50 flower stems/clump/year
 - IAC 41: 33.25 flower stems/clump/year
 - IAC Camburi: 41.20 flower stems/clump/year

Medicinal Values of Torch Ginger

- Flavonoids, terpenoids, saponins, and tannins are essential compounds successfully isolated from torch ginger inflorescences.
- Extracted essential oil from leaves, roots and rhizomes of torch ginger.
- Anthocyanin (flavonoid) in the inflorescence can inhibit the ovarian cancer lines through cytotoxic activity.
- The ethanolic extract of torch ginger inflorescence has a vigorous **antioxidant activity** and could be used as a **treatment for lead poisoning**.
- Flower extracts were also proved to repress **Human breast carcinoma tumor cell** lines of MCF-7 and MDA-MB-231.

Nutritional properties

- There is always a demand for marketable and **high nutritional products** in the food and health supplement sectors.
- The inflorescence contains a high level of protein, crude lipid, and fiber, with the contents on dry weight basis is 12.6%, 18.2%, and 17.6%, respectively.
- The inflorescence contains **essential minerals** like potassium, calcium, magnesium, phosphorus, iron, zinc, sodium, and boron.

PRODUCT DEVELOPMENT

Agro-Industry- Food products

Torch ginger puree

Chilli sauce mixed with torch ginger and anchovies

Dried torch ginger for **cooking** and garnishing

Agro-Industry- Home essentials

Bhumi Sekitar, 2021

Product Development- FL1 cream

Article **Efficiency of Skin Whitening Cream Containing** *Etlingera elatior* Flower and Leaf Extracts **in Volunteers**

Nattawut Whangsomnuek¹, Lapatrada Mungmai², Kriangsak Mengamphan^{3,4} and Doungporn Amornlerdpison^{3,4,*}

- ¹ Interdisciplinary Agriculture Program, Maejo University, Chiang Mai 50290, Thailand
- ² Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- ³ Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai 50290, Thailand
- ⁴ Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
- * Correspondence: doungpornfishtech@gmail.com; Tel.: +66-86-654-6966

Flower and leaf extracts for natural whitening ingredient

- Natural antioxidant compounds, along with having anti-aging, anti-microbial, anti-inflammatory, and tyrosinase-inhibiting actions.
- These compounds in cosmetic products tend to be **safer**, **biodegradable**, more **environmentally friendly**.
- Previous study- aqueous extracts consists of isoquercetin, catechin, and gallic acid, which are capable of inhibiting tyrosinase activity, leading to a skin lightening effect useful in cosmetic applications.

Phase	Trade Name	INCI Name	%
А	Nikkomulese LH	Glycerin (and) Hydrogenated lecithin (and) Hydroxypropyl methylcellulose stearoxy Ether (and) Squalane (and) Sodium methyl stearoyl taurate	4.00
(Oil Phase)	DC 350	Dimethicone	3.00
	Squalane	Squalane	5.00
	Cetyl alcohol	Cetyl alcohol	0.30
	Stearyl alcohol	Stearyl alcohol	0.30
B (Water Phase)	Na ₂ EDTA	Disodium EDTA	0.10
	Glycerin	Glycerin	3.00
	Butylene glycol	Butylene glycol	4.00
	Carbopol ultrez 21 polymer	Acrylates/C10-30 alkyl acrylate crosspolymer	0.50
	1Flower/1leaf extract	Etlingera elatior	1.00
	DI water	Aqua	q.s. 100
С	NaOH (18% w/v)	Sodium hydroxide (for adjusting pH to 5.5)	0.30
D	Spectrastat BHL	Caprylhydroxamic acid (and) 1,2-hexanediol (and) butylene glycol	2.00

Table 1. The formulations of FL1 cream containing *Etlingera elatior* flower and leaf extracts.

Figure 4. The satisfaction of the volunteers with the FL1 cream.

Product Development- Green Synthesis of Gold Nanoparticles

Article Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer

Farah Asilah Azri ^{1,*}, Jinap Selamat ^{1,2,*}, Rashidah Sukor ^{1,2}, Nor Azah Yusof ³, Nurul Hanun Ahmad Raston ⁴, Noordiana Nordin ¹, and Nuzul Noorahya Jambari ^{1,2}

- ¹ Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- ² Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- ³ Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- ⁴ School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
 43600 UKM Bangi, Selangor, Malaysia
- * Correspondence: farah.asilah90@gmail.com (F.A.A.); sjinap@gmail.com (J.S.)

Product Development- Green Synthesis of Gold Nanoparticles (AuNPs)

- The use of plant materials for the synthesis of AuNPs.
- Reducing agents- used as a simple green synthesis of AuNPs by using an **aqueous** extract of torch ginger.
- Gold nanoparticles used in drug delivery in biological and medical applications, plant genetics and sensory probes.

Challenges and Future Perspectives

Breeding Attempt and Challenges

- Due to the **inflorescence structure**, the crossing process and its analysis is challenging to perform.
- The difficulty of crossing is proven with low fruit set due to the position of the individual flowers in inflorescence, identifying crossed and pollinated flowers.
- More effective means of identifying individual flowers which have been pollinated is needed

Future Perspectives

- The export value of Malaysia's floriculture industry stands at US\$ 119 million (RM 500 million) in 2017, which created 50,000 jobs opportunities. Moreover, Malaysia is ranked 8th in the world as an exporter of floriculture products.
- Thus, the **expansion of the industry** will increase the national income and strengthen the nation's economy.

National Agrofood Policy 2021-2030

NATIONAL AGROFOOD **POLICY 2.0**

To be launched in 2021 to accelerate the modernisation of the agrofood sector & balance national food supply & demand

SDGs 2030

Aims

IR4.0

• To ensure food security

• To increase the contribution to the livelihood of the target group & national economy

In line with:

Will introduce a technology-

based & sustainability-

Involves a new way forward over 10 years & the implementation of various initiatives like:

Developing agricultural inputs for all the agrofood subsectors

2 Making Malaysia a major world producer of tropical fruit

3 Strengthening agricultural extension in step with technology

development to discover high-yield & resilient crop

Source: Deputy Prime Minister, Datuk Seri Dr Wan Azizah Wan Ismail

Bernama Infographics

Farmers

Harian Metro, 2021

Harian Metro, 2020

Kosmo, 2020

Harian Metro, 2020

What can we do? Germplasm collection

- In Malaysia, torch ginger is mostly cultivated by small scale farmers with land race varieties.
- The **national germplasm** and **national database portal** for collections need to be constructed to select traits that can be used in the future to generate more **new cultivars**.

What can we do? Genetic Improvement

- Biotechnological techniques that can be manipulated are **somaclonal variation** through **plant tissue culture, genetic engineering**, and *in vitro* mutation. It would be worth exploring the **possibility of improvising** and producing **new food products** based on the nutritional value of the plant.
- Modern households move towards modern **interior decorations**. The successful inducing **dwarfism** of torch ginger was the starting point to produce cultivar suitable for indoor plants.

What can we do?

- Accelerating modern technology application
- Optimizing farm size for productivity
- Establish an efficient agrofood value chain
- Strengthening specific industry for herbs and medicinal plants
- Enhancing value added in food industry and agro related activities
- Clinical test for toxicology assessment and mutagenicity analysis. Cosmetic and nutraceutical products.

Conclusion

- It is a plant with a lot of benefits.
- Torch ginger can be planted into industrial scale as abundance of potentials make this plant as a perfect candidate for the plant of the future.

Publications

Scientia Horticulturae 135 (2012) 145-150

Contents lists available at SciVerse ScienceDirect

Scientia Horticulturae

journal homepage: www.elsevier.com/locate/scihorti

Turkish Journal of Biology http://journals.tubitak.gov.tr/biology/ **Research Article**

Turk J Biol (2013) 37: 716-725 © TÜBİTAK doi:10.3906/biy-1303-19

In vitro mutagenesis of Etlingera elatior (Jack) and early detection of mutation using RAPD markers

Muhamad Fahmi YUNUS¹, Maheran Abd AZIZ^{1,2,*}, Mihdzar Abdul KADIR¹, Siti Khalijah DAUD³, Azmi Abdul RASHID¹ ¹Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ²Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ³Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

In vitro propagation of *Etlingera elatior* (Jack) (torch ginger)

Muhamad Fahmi Yunus^a, Maheran Abd Aziz^{a,b,*}, Mihdzar Abdul Kadir^a, Azmi Abdul Rashid^a

^a Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia ^b Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

References

- Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, Jambari NN. (2019). *Etlingera elatior*-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer. Molecules. 24(17):3141. doi: 10.3390/molecules24173141. PMID: 31470528; PMCID: PMC6749185.
- Aswani, K., Sabu, M., & Smisha, K. P. (2013). Reproductive biology of *Etlingera elatior* (Jack.) R. M. SM. ornamental torch ginger. International Journal of Plant, Animal and Environmental Sciences, 3(4), 75–80.
- Department of Agriculture. (2018). Statistik tanaman herba dan rempah-ratus (Herbs and spices statistic). Retrieved from http://www.doa.gov.my/index.php/pages/view/622?mid=239.
- Ismail, N. A., Rafii, M. Y., Mahmud, T. M. M., Hanafi, M. M., & Miah, G. (2019). Genetic diversity of torch ginger (*Etlingera elatior*) germplasm revealed by ISSR and SSR markers. BioMed Research International, 2019, 1-14. https://doi.org/10.1155/2019/5904804.
- Ismail, N.A., Rafii, M.Y., Mahmud, T.M.M, and Hanafi, M.M. (2021). Genetic Variability and Diversity of the Agro-Morphological Traits of Torch Ginger (*Etlingera elatior*) Germplasm in Malaysia. *Journal of Agriculture and Ecology Research International.* 22(4): 37-57.
- Sabilu, Y., Sahidin, Mukaddin, A., Bittikaka, Y., Tawa, R. A., Paddo, J., & Saptaputra, S. K. (2017). The utilization of sikala (*Etlingera elatior*) as traditional medicine in Porehu District, North Kolaka Regency, Southeast Sulawesi Province, Indonesia. Advances in Environmental Biology, 11(9), 5–9.
- Whangsomnuek. N., Mungmai., L, Mengamphan, K. and Amornlerdpison, D. (2019). Bioactive compounds of aqueous extracts of flower and leaf of *Etlingera elatior* (Jack) R.M.Sm. for cosmetic application. *Maejo International Journal of Science and Technology: 13*(03), 196-208.

Thank You

- Team Members
- From MARDI- Nor Asiah Ismail, PhD
- From IIUM Tamil Chelvam, Phd; Zarina Zainuddin, PhD; Nor Salsabila, BSc

Contact me: fahmiyunus@iium.edu.my