
AI-BASED LEVEL DETECTION AND

OPTIMIZATION OF ASSISTIVE ROBOT

MANEUVERABILITY

Siti Fauziah Toha

Ahmad Syahrin Idris

Abdur Razzaq Abd Halim

AI-BASED LEVEL DETECTION AND
OPTIMIZATION OF ASSISTIVE
ROBOT MANEUVERABILITY

Siti Fauziah Toha, Ahmad Syahrin Idris,
Abdur Razzaq Abd Halim

ii

The book AI-Based Level Detection and Optimization of Assistive Robot Maneuverability Is published by Centre for
the Professional Development (CPD), IIUM.

Centre for Professional Development (CPD)
International Islamic University Malaysia
Jalan Gombak,
Selangor Darul Ehsan,
MALAYSIA
Tel: +603-6421 5914/ Fax: +6421 5915
Email: admin_cpd@iium.edu.my
Website: www.iium.edu.my/centre/cpd

First published in 2021
Publication © Centre for Professional Development, IIUM.

©
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise except brief extracts for the
purpose of review without the prior permission in writing of the publisher and copyright owner from Centre for
Professional Development, IIUM. It is advisable also to consult the publisher if in any doubt as to the legality of any
copying which is to be undertaken.

National Library of Malaysia
Cataloguing-in-Publication Data

Online Teaching for the Emerging Online Teacher

AUTHORS: Siti Fauziah Toha, Ahmad Syahrin Idris, Abdur Razzaq Abd Halim

e ISBN 978-967-19026-5-3
1. AI-Based Level Detection 2. Optimization Of Assistive Robot Maneuverability

iii

1 PREFACE

Assistive devices for blind and visually impaired people are one of the technologies that
famous among the researchers. There are many devices has been developed by the
researcher in order to aid the visually impaired people to move around. One of the
challenges faces by the blind and visually impaired people is stair. Using traditional
method, the present of the staircase cannot be detected in a safe distance. Rovision is
one of the devices that has the capability to guide the user to move to desired place
without hitting any obstacle or object. In mobile robot, sensors play important roles in
guiding the robot by sending the data of the surrounding for the robot to execute the
action. Camera and ultrasonic sensor are two sensors that use in the Rovision to navigate
the robot in safe distance while detecting the staircase. Image processing is one of the
best methods in detecting staircase. It has a capability to learn by its own using the training
dataset. By training the dataset, the system be able to identify the staircase and the
position inside the camera frame to help Rovision to maneuver and guide the user safely.
Rovision also use ultrasonic sensors to avoid obstacle in surrounding in order to have
clear and safe path for the visually impaired person. This AI-Based Level Detection and
Optimisation of Assistive Robot Maneuverability book will be useful for postgraduate
students as well as final year undergraduate students researching on robotics area
especially using the latest python software with focus on artificial intelligence techniques.

Siti Fauziah Toha
Department of Mechatronics,
Kulliyyah of Engineering,
International Islamic University Malaysia.
2021

iv

2 ACKNOWLEDGEMENT

We would like to acknowledge the help from the following colleagues, Muhammad
Rafeeq, Zakariya Zainol, Aisyah Ibrahim, for their unprecedented support and valuable
suggestions. This book would not have been complete without the moral support and
prayers of our family and friends. Last but not least, the Malaysian Ministry of Higher
Education (MOHE) supported this work under the project grant: SRCG20-046-0046 IoT-
Based Visually Impaired Community (VIC) Geospatial Tracking with Swarming RoVision
(SR), RM20,000. 23 Disember 2020 – 22 Disember 2022. (Collaborative research
between IIUM – UiTM – UMP – Southampton Univesity Malaysia).

v

3 CONTENT

 PREFACE .. iii

 ACKNOWLEDGEMENT.. iv

 LIST OF FIGURES .. vii

 LIST OF TABLES ... ix

 Chapter 1: Introduction ... 1

1.1 Overview ... 1

1.2 Problem Statement ... 2

 Chapter 2: System Overview... 3

2.1 Recent Development of Assistive Device.. 3

2.2 Autonomous Staircase Detection Robot ... 4

2.3 Artificial Neural Network Controller (ANN) .. 6

2.4 Image Processing in Autonomous Robot .. 13

 Chapter 3: System Design .. 20

3.1 Overview of Rovision System ... 21

3.2 Performance Metrics ... 22

3.3 Hardware .. 24

 Chapter 4: System Development ... 29

4.1 Collecting Training and Validation Data .. 29

4.2 Python software programming .. 36

4.3 Experiment Setup ... 44

 Chapter 5: Results and Analysis ... 46

5.1 Overview ... 46

5.2 Results and Analysis ... 46

5.3 Discussion .. 56

vi

 Chapter 6: Conclusion & Future Work ... 57

6.1 Conclusion .. 57

6.2 Future Work .. 57

 REFERENCE .. 58

 ABOUT THE AUTHORS .. 60

vii

4 LIST OF FIGURES

Figure 2.1: Method from Previous Researcher Using Tri-Star Wheel Robot (Thu et al.,

2019) ... 4

Figure 2.2: Design of The UGV and The Result of Edge Detection from Video Feedback

(Masood et al., 2017) .. 5

Figure 2.3: Example of Artificial Neural Network System With 2 Hidden Layers 7

Figure 2.4: Artificial Neural Network System based on research (Medina-Santiago et al.,

2014) ... 8

Figure 2.5: Illustration on the path of Forward and Backward Propagation 11

Figure 2.6: Example of application of Object Identification .. 14

Figure 2.7: Block diagram for Convolutional Neural Network Form Article (Sumit, 2018)

 .. 15

Figure 2.8: Block Diagram process in Single Shot Detection (SSD) from (Forson, 2017)

 .. 16

Figure 2.9: Comparison of Object Detection Models (Forson, 2017) 17

Figure 2.10: Result obtain in research (Wolff, 2017) ... 18

Figure 2.11: Block diagram converting TensorFlow to TensorFlow Lite provide in (Alake,

2020) ... 19

Figure 3.1: Flowchart for Rovision System Design .. 20

Figure 3.2: Rovision V1.0 Design .. 21

Figure 3.3: Flowchart of Rovision Operating System .. 23

Figure 3.4: Circuit for Rovision .. 24

Figure 4.1: Infographic of Object Detection Workflow ... 29

viii

Figure 4.2: Images for Dataset .. 30

Figure 4.3: Interface for FastStone Software ... 32

Figure 4.4: List of XML file ... 33

Figure 4.5: Labelling Image Process ... 33

Figure 4.6: CSV File Coordinate of the Label Image ... 34

Figure 4.7: List of TensorFlow Version .. 35

Figure 4.8: List of Command to Create A Virtual Environment 36

Figure 4.9: Training Process using Anaconda Prompt .. 37

Figure 4.10: Coding for Adding Line to the Bounding Box and Frame 38

Figure 4.11: Motor.py and Ultrasonic.py Python Script.. 38

Figure 4.12: Experiment Venue ... 39

Figure 5.1: Example SSD Structure with 6 Convolution Layers 41

Figure 5.2: Graph of Error Minimisation .. 42

Figure 5.3: Result of Detecting Descending Staircase After Training the Model 42

Figure 5.4: Result of Detecting Ascending Staircase After Training the Model 44

Figure 5.5: Result as Rovision Closed to Ascending Staircase 44

Figure 5.6: Result as Rovision Detect Descending Staircase .. 47

Figure 5.7: Result as Rovision Closed to Ascending Staircase………………………………………….. 48

Figure 5.8:Result as Detecting Descending Staircase………………………………………………..……… 48

Figure 5.9: Result as Rovision Detect Descending Staircase .. 49

ix

5 LIST OF TABLES

Table 2.1: Illustrate the Result from Different Staircases (Masood et al., 2017) 6

Table 2.2: Illustrate the Type of Activation Function for Neural Network (Feng & Lu, 2019)

 .. 9

Table 2.3: Notation Variable for Related Equation Above Based on Research (Medina-

Santiago et al., 2014) .. 12

Table 3.1: Raspberry Pi Specification ... 25

Table 3.2: Camera Specification ... 25

Table 3.3: Ultrasonic Sensor Specification .. 26

Table 3.4: DC Motor Specification ... 26

Table 3.5: Motor Driver Specification .. 27

Table 3.6: Lithium-ion Battery Specification .. 27

Table 3.7: Buck Converter Specification ... 28

Table 5.1: The Result for Ultrasonic Sensor Accuracy Test .. 47

Table 5.2: Total Loss Value Every 1k Steps .. 49

Table 5.3: The Accuracy of Ascending Staircase .. 51

Table 5.4: The Accuracy of Descending Staircase .. 52

1

1 Chapter 1: Introduction

1.1 Overview

Statistically, based on the research that was made by World Health Organization, there
are about 285 million visually impaired people worldwide in 2012. Unlike us, they have
difficulty to live their normal life. A normal and easy task such as to move from one place
to another safely or to differentiate an object from another may be an easy for us but not
for them as these people had lost one of their 5th senses which is their sight. Thus, they
can only depend on the other senses which are hearing, touch, smell and taste. However,
for them, to depend on the other four senses still cannot ensure their safety whenever
they want to do activities. Thus, a lot of devices has been built and developed for them to
ease their mobility.

Rovision is one of the robots that has been developed by Dr Siti Fauziah and her team for
the purpose of helping the visually impaired people to detect obstacle. Its functions can
merely be the same as the traditional guide dog as this robot contains suitable sensors
and actuator to aid the disable. Rovision was built with several parts which are robot body,
white cane holder, wheels and robot head. Multiple sensors are attached to the robot’s
head and body. Sensors are one of the most important part in Rovision as it allows the
robot to collect data from robot’s surrounding area. Data that has been collected by
multiple sensors will be filtered out to get the final path for the robot to go and successfully
avoid the obstacle.

Controller is one of the crucial components need to have in every autonomous mobile
robot. It acts as the brain for the robot in determining the action of the robot, how it moves
and the way robot processing the data. Controller is a set of code that has been written in
the microprocessor with multiple of conditions and algorithms in order to make the robot
act according to desired goal. The common microcontroller that usually use to create an
autonomous robot are Arduino and Raspberry Pi. Multiple versions of Integrated
Development Environment (IDE) are available to simulate and test the efficiency of the
controller. Arduino IDE, Python IDE, MATLAB are the most popular IDE when it comes to
design and implement the controller to a robot.

Selecting suitable controller for the robot is very important depending on the situation and
the surrounding of the robot. There are a lot of controller available in mobile robot field
such as sensor filter, fuzzy logic, artificial neural network and etc. Implementing the
controller to a robot will make the robot able to follow the desirable output. All the controller

2

is based on mathematical algorithm which can be change depending on the condition.
Most of autonomous mobile robot only implement one controller for a robot but sometimes
controller can be combined in order to get more precise and accurate output.

1.2 Problem Statement

Visually impaired people often faced difficulty to undergo their daily life naturally due to
limited movement capability, and proper guiding device. Without hundred hours of training
on the route, it is difficult for them to move safely. Although reports have shown some
improvements using global positioning system (GPS) receiver with braille access to
localise information in any outdoor environment, it still does not guarantee a hazard free
journey without the visually able person’s help. However even an independent visually
impaired person walking alone is susceptible to danger. Therefore, the need to model an
algorithm for a localised swarm-like cooperative and communicator which could be used
among the visually impaired is crucial. This would be useful for the targeted group to
enable them to walk in a larger group with assurance that they know their company during
the travel and also for safety precautions.

The biggest challenges are to help the visually impaired people to navigate through the
ascending and descending staircase. Visually impaired people mostly felt down due to
they are not aware with the present of the staircase. They also have difficulty in finding
the staircase whenever they in building, surrounding and unfamiliar areas. Choosing the
right sensors and controller is crucial as the robot need to be the 5th sense for this people.

In this book, a raspberry pi is showcases to be used to combine multiple signals from
camera sensors and 4 ultrasonic sensors into one clear data that can be guide the robot
in order to execute the next action such as move forward or reverse whenever staircase
is detected. Thus, a control system is very much important element to ensure the Rovision
‘thinking’ ability what to be done for the next action.

3

2 Chapter 2: System Overview

2.1 Recent Development of Assistive Device

Assistive devices are commonly used where people mostly depended on the device to
accomplish their tasks and works. For blind and visually impaired people (VIP), the
development of technology really gives them benefits as now they can be independent
without needed any helps from other people. Nada et al., 2015 reported that almost 85%
of the people with visually impaired experienced tripping when walking and thus resulting
in a fall. Thus, assistive device helps visually impaired people to know their surrounding
accurately and help them to avoid obstacles and holes on the ground compared to
traditional method which used long cane and guide dog.

There are varieties of designs has been made by previous researcher to create a fully
functional assistive device for the impaired people. All the design usually used different
kind of sensors and sometimes mix few sensors to obtain stable and accurate data.
(Mahmood et al., 2015) Sonar Assistive Device for Visually Impaired people is one of the
projects that has been done by previous researcher. Sonar technology is used to help
those visually impaired people to self-walking and give confident to them. As a result, it is
found that 90 % of users confident to use the device to help them detecting obstacles.

Smart stick also been developed in order to improve the efficiency of normal long cane.
In this device, developer added sensors such as ultrasonic sensors and water sensor that
can detect high-level and low-level obstacle and hole specifically water puddle. Based on
the result of the research, blind and visually impaired people feel much safer after few
attempts using smart stick as the average speed of the blind user increase respect to
number of attempts. (Nada et al., 2015)

This book showcases the research undertaken in order to improve efficiency of the
designed assistive device (Rovision) for the blind, specifically in detecting staircase. The
vital problems related with maneuverability of the VIP is during stair ascending and
descending which is prone to tipping over and falling. The current designed assistive
device is only compatible in certain and in limited environment only, therefore with the
outcome of this research on the use of assistive device is widen.

4

2.2 Autonomous Staircase Detection Robot

Most of previous technology for blind and visually impaired people assistive device do not
have a system that helps user to detect the present of staircase or any incline surface.
this problem should be taken for consideration as most of the terrain are not smooth and
have many obstacles. The device most probably assume staircase as an obstacle that
need to be avoided. Thus, a optimize control system needs to be embedded into this
technology to distinguish between staircase and obstacles so that it can increase the
effectiveness and efficiency of the technology.

This advance technology is famous and usually implement in autonomous mobile robot
that required robot to be able to detect and climb object like staircase. Earthquake Rescue
Robot is one of the examples of successful product in implementing this technology.
Different kind of approached has been done by previous researcher in creating an
autonomous staircase detection robot such as legged by (Łabȩcki et al., 2011), wheel by
(Thu et al., 2019) and track by (Masood et al., 2017), (Adiwahono et al., 2014),
(Mihankhah et al., 2009), (Roumeliotis et al., 2002). This variety of method creates many
ways to solve the problem and different output.

Figure 2.1: Method from Previous Researcher Using Tri-Star Wheel Robot (Thu et al.,

2019)

In research done by (Thu et al., 2019), the robot as shown in Figure 2.1 uses two
ultrasonic sensors as the medium to detect the obstacle, gyro to detect the position of the
robot and two encoders to measure the rolling of tri-star wheels. Based on the results,

5

positioning of the sensors will affect the output data from the robot. Ultrasonic sensor is
mounted at the bottom of the robot also at one of the tri-star wheel as sensor to detect the
distances from obstacle and the distance from ground respectively. As the robot start to
climb the stair, ultrasonic sensor and gyro start to detect changes in value and position.
Thus, the result from this research shows that by combining the data from all the sensors
will result more accurate output data.

Another paper from (Masood et al., 2017) take different approach in creating stair
detection robot as shown in Figure 2.2. The author mentioned that the purpose of creating
this robot is for urban search and rescue purposes. Image processing method has been
used in this robot in order to detect the orientation and the position of the stair effectively.
It also used the video feedback to avoid any collision with object by using the edge
detection of the stairs. An algorithm was developed on MATLAB to find the required angle
to climb the stair. The algorithm is important as it determines the position of the different
steps by comparing different intensity of light from video feedback.

Figure 2.2: Design of The UGV and The Result of Edge Detection from Video Feedback
(Masood et al., 2017)

6

Table 2.1: Illustrate the Result from Different Staircases (Masood et al., 2017)

Table 2.1 shows the result of few iterations of slope from five different staircases. The
result was gained from the video feedback after edge detection and noise cancelation
process taken by build in camera on the robot. As the error is so small, the data still can
be used to flip the robot arm to exact angle in order to climb the stair. Researcher come
up with variety of method in developing a robot that able to detect staircase and object.
Thus, in this book, an artificial neural network is discussed as a controller to the robot
system to navigate the robot in the right direction that clear from any obstacles.

2.3 Artificial Neural Network Controller (ANN)

2.3.1 Overview

In general, an Artificial Neural Network is a computing system that mimic the works of
human brain in processing the data and making the right decision. The self-learning in the
system makes it compatible to solve problem that hard for human and it also led to the
development of Artificial Intelligence. Processing units comprise ANNs which consist of
inputs and outputs in turn. The inputs are what the ANN learns to generate the desired
output from. an input, an output and a hidden layer are 3 layers that must have to construct
an artificial neural network as shown in Figure 2.3. Hidden layer is a layer exist between
input and output that helps the system to reach the desired output based on the given

7

input. Hidden layer can be single or multiple layers based on the complexity given to the
system.

Figure 2.3: Artificial Neural Network System With 2 Hidden Layers (Toha and Tokhi,

2008)

A study has been done by (Medina-Santiago et al., 2014) on autonomous object
avoidance mobile robot based on artificial neural network mention that navigate a robot
in unknown environment is one of the most crucial challenges in mobile robot field as
those robots have to be able to evade the difficulties they face on their way to a goal.
Thus, neural network is one of the best solutions in solving problem of navigation vehicles
due to its ability to learn nonlinear relationship between the output and the input data.

For the Rovision controller, three ultrasonic sensors were embedded in front of the mobile
robot as the medium to detect the present of the obstacles. The data sensed by the
sensors then will be the input for the neural network system. The output for the system is
the actions that robot will execute based on specific condition. The condition is a logic in
term of mathematical algorithm that generate by the hidden layer referring to the input
data given by the sensors. All set of input and output are in form of vector. 0 in output data
represent action that machine will ignore and 1 is action that will be execute. 4 set of
actions were set in the output layer which are turn left, turn right, recoil and advance. The
neural network for the system can be represent as Figure 2.4.

8

Figure 2.4: Artificial Neural Network System based on research (Medina-Santiago et al.,
2014)

2.3.2 Artificial Neural Network Weight (Parameter)

The efficiency of the artificial neural network is depending on the weight between the
nodes. A weight represents the strength of the connection between units. If the weight
between node 1 and 2 has greater magnitude, it means that neuron 1 has greater
influence over neuron 2. A weight decreases the importance of the input value. Based on
the research (Medina-Santiago et al., 2014), the calculation for the weight between the
input and the first hidden layer was represented in equation (1). All the data and bias
weights are stored in the memory of the embedded system in matrix form.

𝑛𝑛𝑗𝑗𝑜𝑜 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗

𝑜𝑜𝑞𝑞
𝑗𝑗=1 𝑃𝑃𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑜𝑜 (2.1)

where 𝑊𝑊𝑗𝑗𝑗𝑗

𝑜𝑜 is the weight connecting the input layer to the hidden layer, 𝑃𝑃𝑗𝑗 is the component
of the input vector, and 𝑏𝑏𝑗𝑗𝑜𝑜 is the gain of the hidden layer, extra weights in the networks

9

2.3.3 Activation Function

Neural network activation functions are a crucial element of deep learning. Activation
functions enhance the efficiency of a deep learning model, its accuracy, and also the
computational efficiency of training a model which can make or break a large-scale neural
network. Based on the study (Ertuğrul, 2018), he mentions that activation function helps
the neural network controller to set the limit boundary. It prevents the output signal
generate from -infinity to +infinity. Without activation function, the relationship between
input and output is linear regardless number of hidden layers applied in the system.

Numeric data points, called inputs, are fed into the neurons within the input layer in a
neural network. Every neuron has a weight, and multiplying the input number by the
weight gives the neuron output to the next layer. The activation function is acting like a
logic gate between the input that feeds the current neuron, and the output that goes to the
next layer. The simplest activation function can be a step function which can turn output
on and off. There are 2 types of activation function which are the linear and nonlinear
activation function. Research has been made by (Feng & Lu, 2019) on various activation
function and based on the research, linear function has the exact equation as straight line
while nonlinear activation function has different type of shapes which indicates that with
nonlinear activation function, robot can adapt with variety data and to tell the different
between the output.

Table 2.2: Type of Activation Function for Neural Network (Feng & Lu, 2019)

Type of Graph Curve of Function Curve of Derivate

Linear

10

Nonlinear

11

Table 2.2 shows some of the common types of activation function in neural network.
Sigmoid, Tanh, Rectified Linear Unit (ReLu) and Leaky ReLu are the name of the
nonlinear activation function respectively. Note that the different between the derivative
of ReLu and Leaky ReLu is ReLu has 0 input at the negative side while Leaky ReLu is
close to 0 usually 0.01or so at the negative side (Feng & Lu, 2019).

2.3.4 Forward and Backward Propagation

Propagation according to Merriam-Webster brings the meaning of spread or extension.
The term propagate is used in neural network as it illustrates the movement of the data
starting from the input to the output. Forward Propagation is when the data from the input
pass through all the nodes in the hidden layers to output layers, while Backward
Propagation doing the inverse movement from forward propagation.

Figure 2.5: Feedforward and Backward Propagation for Neural Network Layers (Toha
and Tokhi, 2008)

Forward propagation method basically a process that make the controller calculate the
error in the system by finding the difference between the gain output and the desired
output. Assuming the construction of the neural network similar as Figure 2.5 which
consist 3 layers. The general equation is taken from the article by (Nagasawa et al., 2005).

12

𝑧𝑧(2) = 𝑋𝑋𝑊𝑊(1) (2.2)
𝑎𝑎(2) = 𝑓𝑓(𝑧𝑧(2)) (2.3)
𝑧𝑧(3) = 𝑎𝑎(2)𝑊𝑊(2) (2.4)
ŷ = 𝑓𝑓(𝑧𝑧(3)) (2.5)

Table 2.3: Notation Variable for Related Equation Above Based on Research (Medina-
Santiago et al., 2014)

Back propagation method differs to forward propagation as it starts at the output layer
where it takes the error calculated from forward propagation and feed the input back to
the input layer. Referring to (Farooq et al., 2010), the back propagation method uses the
gradient algorithm which can make the value of mean- squared error decrease to it
minimum. At the moment error is minimize, the weight value become stable. The weight
equation can be represented as:

𝑊𝑊𝑛𝑛+1 = 𝑊𝑊𝑛𝑛 + ƞ∑ 𝛿𝛿𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗

𝑝𝑝
𝑝𝑝 (2.6)

where 𝑊𝑊𝑛𝑛+1

0 is the new weight connecting the input layer to the hidden layer, 𝑥𝑥𝑗𝑗 is the

component of the input vector, and 𝛿𝛿𝑗𝑗𝑗𝑗
0

 is the gain of the hidden layer, extra weights in the
networks

Hence, forward propagation or feed forward method is used to calculated the error from
the output between the target and experiment output while for back propagation method,
it is used to reduce the error produce in feed forward method to stabilize the neural system

13

2.4 Image Processing in Autonomous Robot

2.4.1 Overview

Image processing is part of the artificial neural network that has been design in order for
the computer to identify specific object. Image processing field is wide where researcher
applied the image processing method on many applications. (Galvez et al., 2019)
mentioned that image processing is functional in solving many problems as the machine
can have the vision like human and can identify things accurately. The process in the
image processing required high computing power as the system need to be train with a
lot of pictures. With the help of latest technology like high performance GPU and CPU,
training a data set be much easier.

The method of image processing can be different based purpose using the image
processing. Based on research by (Tydén & Olsson, 2020), the processing of digital
images can be categorized into image enhancement, image restoration, image analysis,
and image compression. In image enhancement, an image is changed and manipulated
so that a human can extract useful data from it. Image restoration is where corrupted
images is processed from which there is a statistical or mathematical description of the
degradation so that it can be reverted. Image analysis techniques allow an image to be
processed so that information can be extracted from it automatically.

2.4.2 Object Identification/ Recognition

Object identification or recognition is one of the latest technologies invented using image
processing method. This advance technology able to label object on the image or live
feed correctly by creating boarder around the object. One of the machines that use this
technology is autonomous driving car. The implementation of this image processing
makes the machine work effectively as it can recognize all the object in front of it through
camera. The more advance the technology used on the autonomous car, the more reliable
the car can be to the user as shown in Figure 2.6.

14

Figure 2.6: Application of Object Identification (Galvez et al., 2019)

Based on the research paper by (Galvez et al., 2019), he mentioned that there are several
approaches made by previous researchers on detecting and tracking an object using
video feed. Extracting information from the video is a very difficult as it required complex
algorithm that make the machine be able to track and detect a moving object smoothly.
Creating a boarder and colored mask on the object are two methods that available for
object tracking and identification. These two methods might be the same but have a
different result. (Galvez et al., 2019) explained that creating a boarder on the object might
be the best among the two because it can capture the whole part of the object with less
noise and the machine has no problem on creating and updating the boarder on a moving
object on the video or live feed. Creating mask on the object has the same purposes with
the first one but it will create a silhouette based on the object. The disadvantages of this
method are it cannot cover all the object. This problem can be solved by improving the
camera to have more resolution

2.4.3 Convolution Neural Network

CNN is a well-known method used for computer vision and over the past few decades it
has improved in accuracy. An input layer, an output layer, and intermediate hidden layers

15

are built up into a CNN. Figure 2.7 provides an overview of the architecture of a
convolutional neural network.

Figure 2.7: Block diagram for Convolutional Neural Network (Sumit, 2018)

Based on (Sumit, 2018), Convolutional neural network mostly used to do image
recognition, image classification, object and face detection. CNN is a special type of
neural network architecture that designed to work with two-dimensional image data. The
name convolutional is given as it applies convolution method in the convolutional layer.
Within the setting of a CNN, a convolution could be a straight operation that includes the
duplication of a set of weights with the input, much like a conventional neural arrange.
Given that the procedure was designed for two-dimensional input, the multiplication is
performed between a cluster of input information and a two-dimensional cluster of
weights, called a filter. This orderly application of the same filter over an image may be
an effective thought. In case the filter is outlined to detect a particular sort of highlight
within the input, at that point the application of that filter efficiently over the complete input
image allows the filter an opportunity to find that highlight anyplace within the image.

Feature learning and classification are two process that involve in CNN. Feature learning
is process where the input data’s information will be filter out using kernel in every pixel
on the image. The process will include the pooling process and the application of
activation function. In classification process, the data then will go through the traditional
neural network where forward propagation and backpropagation process occur. This
process will determine the class of the image based on data extraction from feature
learning process. Thus, CNN is one of the best architectures that can be used in deep

16

learning and machine learning as its capability to operate multiple layers in processing
information in an image.

2.4.4 Single Shot Detection (SSD)

Single shot multiple box detection is one of the architectures that commonly used in
convolutional neural network. There are different types of algorithm available in
convolutional neural network for instance YOLO (You Only Look Once), Faster R-CNN,
R-CNN and etc. the existence of multiple architecture is to adapt with latest technology
and convolutional neural network can be apply at any devices. Faster R-CNN and R-CNN
are commonly applied on a desktop which have high processing power while YOLO and
SSD are created to make the system applicable to mobile devices such as raspberry pi
and smartphone.

Figure 2.8: Block Diagram process in Single Shot Detection (SSD) (Forson, 2017)

Apart from the capability to operate in mobile devices, SSD also able to detect multiple
boxes in single shot. Based on article written by (Forson, 2017), he mentions that SSD
was designed for detecting multiple categories. The structure of the model uses multiple
scale convolution bounding box outputs attached to the network. This feature is very
useful in lots of situationwhere the camera needs to identify multiple objects as shown in
Figure 2.8.

17

A comparison on accuracy between all primary object detection methods was done by
PASCAL VOC 2017 using coco datasets based on article from (Forson, 2017). Based on
Figure 2.9, the accuracy performance by SSD methods is on the second highest before
R-CNN which mean that SSD is the most suitable and accurate method to apply in mobile
devices like this project.

Figure 2.9: Comparison of Object Detection Models (Forson, 2017)

2.4.5 MobileNet Inception in Single Shot Detection

Single shot detection is selected to be used in this project due to its capability to detect
multiple objects at once. In TensorFlow, there are two available type of Convolution neural
networks available for SSD algorithm that capable to run in low computing mobile devices
which are the SSD Mobilenet V2 and SSD Inception V2. Both methods use different type
of convolution neural network which standard CNN used in Inception and Depthwise CNN
used in Mobilenet. A previous researcher (Wolff, 2017) has made comparison on both
architectures through their performance in term of accuracy, training time, prediction time
and model size. Based on the result obtained from the research shown in Figure 2.10,
(Wolff, 2017) conclude that the performance of the Mobilenet was better compared to the
Inception in all aspects.

18

The accuracy of Mobilenet model increase up to 72.5% from Inception. The result also
illustrate that the Mobilenet perform well compared to the Inception in every test done by
the researcher such as prediction time (950ms for Mobilenet, 5000ms for Inception) and
file size (900KB for Mobilenet, 84MB for Inception). Those comparison is important as the
architecture will be applied on the low computing mobile device. The result below
illustrates three types of model that can be apply in machine learning. But we only focus
on the Mobilenet and Inception model as both of the architectures are available in the
TensorFlow framework. Thus, SSD mobilenet V2 was choosen to be the architecture
model in this project due to its excellent performance and adaptability on the mobile
devices compared to the other model available in TensorFlow.

Figure 2.10: Result obtain in research (Wolff, 2017)

2.4.6 TensorFlow VS TensorFlow Lite

Referring to official TensorFlow website, TensorFlow is an end-to-end opensource
framework. It has a robust, scalable ecosystem of software, libraries and community
services that helps researchers to quickly create and deploy machine learning driven
applications to push the state-of-the-art in machine learning and developers. TensorFlow

19

offers a series of instruments that allow the implementation of a machine learning model
for a variety of purposes and environments.

As stated in the article by (Alake, 2020), TensorFlow Lite takes existing TensorFlow
models and transforms them in the form of a tflite file into an optimized and efficient
version as shown in Figure 2.11. The streamlined model is small enough to be stored on
computers and sufficiently precise for effective inference to be carried out. The
advantages of TensorFlow Lite are it can operate more efficient on mobile devices; it
allows machine learning to run quickly with low latency without using external API or
server which mean it can be run online.

Figure 2.11: Block diagram converting TensorFlow to TensorFlow Lite provide in
(Alake, 2020)

20

3 Chapter 3: System Design

The Rovision system design contains three major parts which are modelling of system,
controller design and hardware implementation. This chapter will explain methods based
on a flowchart that determines all the activities that has to be done. Figure 3.1 shows the
overall Rovision system design

Figure 3.1: Rovision System Design Flowchart

21

3.1 Overview of Rovision System

Rovision is an autonomous assistive robot for blind and visually impaired people to help
them move around. The robot was created to navigate user around and avoid obstacles
to prevent any injuries to the user. Multiple sensors attached on the robot’s head and it
also have speed controller to vary the speed of the motor whenever the sensors detected
any obstacles. Rovision V1.0 consist of a sigle camera and four ultrasonic sensors that
are attached on the robot as its main sensors as shown in Figure 3.2.

Figure 3.2: Rovision V1.0 System Design

Results from system simulation shows that artificial neural network has successfully
provides the ability to avoid the wall and obstacle smoothly. With the improvement of the
microcontroller, Raspberry Pi offers much more convincing result compared to Arduino
microcontroller as the Raspberry Pi has the capability to save data which is necessary
when running an artificial neural network system. One of the drawbacks of using Arduino
microcontroller is it needs repetitive training as the data will be erased every time the
Arduino is turned off. While Raspberry Pi is one of the cheapest computing devices that
available in the market. It mostly used as a portable computer for mini projects because
it has its own microprocessor. Using Raspberry Pi for Rovision, it will help the robot to
produce constant results and most importantly it only requires one-time training.

22

A camera is used as the main sensors along with four other ultrasonic sensors are
connected to the Rovision prototype. A camera will give a vision to the machine to make
it be able to “see” the surrounding. Image processing method is used on the Rovision in
order to make the robot be able to detect a staircase. Image processing will aid the robot
in term of object clarification and localization. The system can be set to detect anything
and classify the object into specific classes. As of a focus of this book, image processing
is trained only to detect the ascending and descending staircase. Further alteration of the
system can be made by adding another class for desired object.

An additional ultrasonic sensor is used as the edge detector sensor. The purpose of this
sensor is to add more safety to the robot. This sensor is programmed to detect any
changes of distance on the floor in order to warn about the descending stair in front. Figure
3.3 shows the overall flowchart of Rovision operating system. This sensor is not
connected with the other three sensors which mean that it will not use artificial neural
network system to activate.

3.2 Performance Metrics

The important points involved with the performance metrics in analysing the system
performance are discussed based on the context of this experiment:

True Positive (TP): System detect stair when stair is available
False Positive (FP): system detect stair but no stair available
True Negative (TN): system not detect stair when no stair available
False Negative (FN): system not detect stair but stair is available

Accuracy is a calculation that indicates whether a model is being trained correctly and
how it performs. Accuracy is calculated using the following formula:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇)

 (3.1)

23

Figure 3.3: Flowchart of Rovision Operating System

24

3.3 Hardware

The hardware is successfully developed as discussed in Section 3.1. The Rovision circuit
diagram is shown in Figure 3.4 comprises of Raspberry pi, Webcamera, Ultrasonic
sensors, DC motor, Motor driver and Battery:

Figure 3.4: Circuit for Rovision

The selection of hardware is depending on the purpose of the project. All the component
are selected based on the capability on executing the targeted output. In developing an
autonomous mobile robot. The component must be portable and can operate in dynamic
situation. The list of components used in this project are presented in the next section.

25

Table 3.1: Raspberry Pi Specification

The Raspberry pi specifically RP 4 model B is a microprocessor that can act as a tiny
computer which suitable to any project that required small computation system and
portable as tabulated in Table 3.1. The raspberry pi 4 used the latest processor that can
withstand more processing work compared to the previous version of raspberry pi.

Table 3.2: Camera Specification

26

The camera is the main sensor in this project due to the objective to locate the position of
the stair. This sensor has the best quality image which can create video on 30fps. Frame
per second (FPS) is important as it can affect the smoothness of the robot movement as
tabulated in Table 3.2.

Table 3.3: Ultrasonic Sensor Specification

Table 3.4: DC Motor Specification

27

For ultrasonic sensor as tabulated in Table 3.3, it become the second sensor for the robot.
The application of ultrasonic sensor is to perform object detection when detecting other
than stair. Precision is key factor for the robot to operate better. In this project, 4 sensors
are used, namely, front sensor, bottom sensor, left sensor and right sensor.

For the selection of motor as tabulated in Table 3.4, DC motor is used to maneuver the
robot to the desired location which is toward the staircase. Thus, it doesn’t have any
requirement to select the suitable motor.

Table 3.5: Motor Driver Specification

Table 3.6: Lithium-ion Battery Specification

28

Motor driver as tabulated in Table 3.5 is used in this project as the motor shield for the DC
motor. The purpose of using this component is to control the speed of the motor by
regulating the voltage supply to the dc motor and to be able to change the direction of
motor either clockwise or anti-clockwise.

Battery used to power up the microprocessor such as raspberry pi as tabulated in Table
3.6. For this project, the robot required 12V to power the motor driver for the dc motor to
move. 3 lithium-ion battery are used to fulfil the requirement by supplying 11.1V.

Table 3.7: Buck Converter Specification

Buck converter is a device that capable to step down the voltage from power supply to
supply to specific components or devices as tabulated in Table 3.7. In Rovision, buck
converter is important as it used to step down voltage supply from battery which is 11.1V
to 5V required to power up Raspberry pi. The target is to power up Rovision using only 1
power supply which is the lithium-ion battery.

Thus, all the components are important in making the Rovision robot be able to move.
Notice that in the circuit, voltage divider is used between the ultrasonic sensor and
raspberry pi. This is due to the capability of the raspberry pi to read the input from the
ultrasonic sensor. Raspberry pi can only read signal from 3.3V only while the ultrasonic
sensor’s echo send signal in form of 5V. using voltage divider, the voltage can be dropped
to desired voltage for the raspberry pi.

29

4 Chapter 4: System Development

4.1 Collecting Training and Validation Data

The illustration shown in Figure 4.1 projected the steps in making an object detection
system that can detect specific object on an image, a video and a live video using
raspberry pi. The process includes collecting related images, labelling image, creating
custom pre-trained models in TensorFlow, converting file to TensorFlow-lite, implement
the custom pre-trained model to raspberry pi and executed the program using USB
camera. Further elaboration on each step will be on next sub section.

Figure 4.1: Infographic of Object Detection Workflow

4.1.1 Collecting Image for Training and Test Data

To create a reliable system, where the system can detect the object precisely, a set of
training data and test data need to be collected to train the machine to recognize the
object. In this project, 1000 pictures of staircase, ascending and descending conditions
are used and be divided into 2 files, the train file and the test file. 20% out of 1000 pictures
are used as the test image while the rest are used for the train image. The picture must

30

be taken in different kind of situations such as low light and different angles to create
variety of information for the system to learn about the staircase as shown in Figure 4.2.

The dimension of the training and test picture must below 720x1280 and the picture data
must not exceed 200KB. It is to ensure the computer can train the picture smoothly and
take short time to complete the training. For this project, at the beginning of training the
picture, the average of the picture size taken by phone camera is around 2MB to 4MB
which already exceed the necessary size and the dimension for the picture is 2160 x 4560.
Using a free software called FastStone Photo Resizer 4.3, the software can resize all the
pictures for the project to below 100KB with dimension of 227 x 480 as shown in Figure
4.3.

Figure 4.2: Some Ascending and Descending Image in the Dataset

31

Figure 4.3: Interface for FastStone Software

4.1.2 Labelling Image

After collecting the train and test image for image processing, labelling image is the next
necessary step to create a file that contain information for the system. Labelling image is
a process where the desired object in the picture is label and group into several group. In
this case, the project only needs two categories which are ascending and descending
staircase. For all the pictures use in the train and test files, it is compulsory to label each
one of the pictures to tell the machine how the object looks like.

This process will make the machine able to identify the position of the targeted object.
Labelling image process in Figure 4.4 will save as .xml file that can be referred in Figure
4.5 containing the label data for each image where it then be converted to .csv files for
the next step before the training session start. Figure 4.6 shows the CSV File Coordinate
of the label image.

32

Figure 4.4: List of XML file

Figure 4.5: Labelling Image Process

33

Figure 4.6: CSV File Coordinate of the Label Image

4.1.3 Installation of TensorFlow Framework

To train the neural network, a deep learning library TensorFlow was used along with the
TensorFlow Object Detection API, which help to simplifies the process of training models
for object detection by using pre-trained models from COCO dataset or custom model
which need to be train from scratch. Google Collaboratory can be used to edit and run
Collab notebooks as it is hosted online and offers free use of GPU (cloud). Another option
is to use the processor from personal computer, either use the CPU or the GPU. GPU is
more preferable as it can fasten the process of training compared to CPU. In order to run
TensorFlow using GPU, a specific software need to be installed into the computer which
is the Nvidia CUDA and Nvidia CUDNN.

The version for each software needs to be correct based on the version of TensorFlow
installed to avoid unwanted error. The specific type of GPU must be used in order to
ensure the GPU fulfil the requirement for image processing. All the information about the
software version and the GPU compatibility can be referred at the official page of Nvidia.0
In this project, GTX 1650 SUPER as main GPU to run the TensorFlow version 1.15 using
Nvidia CUDA version 10.0.130 and CUDNN version 7.6.5 as shown in Figure 4.7. It is
recommended to follow tutorial during installation as manual installation required specific
version to work well.

filename width height class xmin ymin xmax ymax
IMG_20201118_120153.jpg 227 480 Descending 27 86 204 263
IMG_20201118_120229.jpg 228 480 Ascending 5 114 228 344
IMG_20201118_120300.jpg 227 480 Ascending 1 20 209 248
IMG_20201118_120317.jpg 227 480 Ascending 31 20 227 239
IMG_20201118_120317.jpg 227 480 Descending 1 67 122 286
IMG_20201118_120318.jpg 227 480 Ascending 28 15 227 239
IMG_20201118_120318.jpg 227 480 Descending 1 76 145 260
IMG_20201118_120354.jpg 227 480 Ascending 18 59 219 268
IMG_20201118_120408.jpg 227 480 Ascending 126 76 227 243
IMG_20201118_120408.jpg 227 480 Descending 1 98 112 263
IMG_20201118_120415.jpg 227 480 Descending 23 102 227 248
IMG_20201118_120418.jpg 227 480 Descending 26 120 212 265

34

Figure 4.7: List of TensorFlow Version

4.1.4 Anaconda IDE

Anaconda IDE is use as the alternative way to install correct version of TensorFlow in
computer. With the help of Anaconda IDE, the TensorFlow and both Nvidia CUDA and
Nvidia CUDNN will automatically be installed in an environment created by Anaconda IDE
in a correct way using few specific conda command. The advantage of using Anaconda
IDE for TensorFlow installation is one computer can have many versions of TensorFlow
and will not affect one another.

Anaconda IDE helps creating an environment for every TensorFlow installation. The
current version using in this project is Anaconda 2020.07 for Python 3.8. The version of
Python is not fix where in the environment, different version of python also can be used
such as for this project, the environment creates for the TensorFlow used Python 3.7 to
run the PIP installation.

Figure 4.8 shows the command used to create and activate the TensorFlow in Anaconda
environment. Notice that the third line of command is not specifying the version of
TensorFlow-GPU used in the environment. It will download and install the latest version
of TensorFlow which the latest version for now is TensorFlow 2.3.0. To specify the version
for installation, the command can be changed to “conda install tensorflow-gpu==1.15”
where version 1.15 is the version used in this project. It is recommended to try version

35

1.15 and above to check whether the version still can be used with TensorFlow Object
Detection API.

Figure 4.8: List of Command to Create A Virtual Environment

4.1.5 Data Training Process

After setting up the virtual environment for the TensorFlow, the dataset can be trained in
the environment. A python script named train.py is used to start the training process for
the SSD Mobilenet V2 Quantized. As the script is running, the program will load for about
two to three minutes to collect the related data before proceed the training process. The
training process takes about 12 hours to train the model to ensure the loss in the training
session consistently drop below to below the value of 2. The time taken for the process is
based on the dataset prepared earlier as shown in Figure 4.9.

4.1.6 TensorFlow Raspberry Pi

TensorFlow file cannot be directly apply to raspberry pi as the raspberry pi has very low
computing power. The other method that available is converting the TensorFlow file to
TensorFlow Lite. TensorFlow Lite is very suitable for low computing and mobile devices
that want to run image processing. In the process of converting TensorFlow to TensorFlow
Lite, TensorFlow Lite Optimizing Converter (TOCO) is used to convert the frozen graph
we just exported into a model that can be used by TensorFlow Lite.

36

Figure 4.9: Training Process using Anaconda Prompt

4.2 Python software programming

Python is a popular programming language. It was created by Guido van Rossum
(Rossum, 2001), and released in 1991. Python is an interpreted high-level general-
purpose programming language. Its design philosophy emphasizes code readability with
its use of significant indentation. Its language constructs as well as its object-oriented
approach aim to help programmers write clear, logical code for small and large-scale
projects.

37

The Python coding uses a TensorFlow Lite model to perform object detection and image
classification on a live webcam. It draws boxes and scores around the objects of interest
in each frame from the webcam. To improve FPS, the webcam object runs in a separate
thread from the main program using OpenCV. The coding is divided into six main sections:

Section 1: to initiate python coding using TensorFlow Lite
Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import time
from threading import Thread
import importlib.util
from Ultrasonic import ultrasonic
from Motor import motor
import RPi.GPIO as GPIO

Section 2: to define VideoStream class to handle streaming of video from webcam in
separate processing thread
ult = ultrasonic()
mot = motor()
x = input("Ascending(A) or Descending(D): ")
if (x == 'A'):
 stair = 'Ascending'
elif (x == 'D'):
 stair = 'Descending'
class VideoStream:
 """Camera object that controls video streaming from the Picamera"""
 def __init__(self,resolution=(640,480),framerate=30):
 # Initialize the PiCamera and the camera image stream
 self.stream = cv2.VideoCapture(0)
 ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
 ret = self.stream.set(3,resolution[0])
 ret = self.stream.set(4,resolution[1])

 # Read first frame from the stream
 (self.grabbed, self.frame) = self.stream.read()

Variable to control when the camera is stopped
 self.stopped = False
 def start(self):
 # Start the thread that reads frames from the video stream

38

 Thread(target=self.update,args=()).start()
 return self
 def update(self):
 # Keep looping indefinitely until the thread is stopped
 while True:
 # If the camera is stopped, stop the thread
 if self.stopped:
 # Close camera resources
 self.stream.release()
 return

 # Otherwise, grab the next frame from the stream
 (self.grabbed, self.frame) = self.stream.read()
 def read(self):
 # Return the most recent frame
 return self.frame
 def stop(self):
 # Indicate that the camera and thread should be stopped
 self.stopped = True

Section 3: to define and parse input arguments in the TensorFlow Lite
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
 required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
 default='detect.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than
labelmap.txt',
 default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying
detected objects',
 default=0.5)
parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the
webcam does not support the resolution entered, errors may occur.',
 default='1280x720')
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up
detection',
 action='store_true')
args = parser.parse_args()

MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)

39

resW, resH = args.resolution.split('x')
imW, imH = int(resW), int(resH)
use_TPU = args.edgetpu

Section 4: to import TensorFlow libraries and VideoStream initialisation
If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular
tensorflow
If using Coral Edge TPU, import the load_delegate library
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
 from tflite_runtime.interpreter import Interpreter
 if use_TPU:
 from tflite_runtime.interpreter import load_delegate
else:
 from tensorflow.lite.python.interpreter import Interpreter
 if use_TPU:
 from tensorflow.lite.python.interpreter import load_delegate

If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
 # If user has specified the name of the .tflite file, use that name, otherwise use default
'edgetpu.tflite'
 if (GRAPH_NAME == 'detect.tflite'):
 GRAPH_NAME = 'edgetpu.tflite'

Get path to current working directory
CWD_PATH = os.getcwd()

Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)

Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)

Load the label map
with open(PATH_TO_LABELS, 'r') as f:
 labels = [line.strip() for line in f.readlines()]
Have to do a weird fix for label map if using the COCO "starter model" from
https://www.tensorflow.org/lite/models/object_detection/overview
First label is '???', which has to be removed.
if labels[0] == '???':
 del(labels[0])

Load the Tensorflow Lite model.

40

If using Edge TPU, use special load_delegate argument
if use_TPU:
 interpreter = Interpreter(model_path=PATH_TO_CKPT,
 experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
 print(PATH_TO_CKPT)
else:
 interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()

Get model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5

Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()

Initialize video stream
videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
time.sleep(1)

#for frame1 in camera.capture_continuous(rawCapture,
format="bgr",use_video_port=True):
while True:
 # Press 'q' to quit
 if cv2.waitKey(1) == ord('q'):
 break
 x_centre = 0
 img_centre = 0
 object_present = 0
 sleep = 1.5

 forward = ult.F_distance()
 bottom = ult.B_distance()
 right = ult.R_distance()
 left = ult.L_distance()

 # Start timer (for calculating frame rate)
 t1 = cv2.getTickCount()

41

 # Grab frame from video stream
 frame1 = videostream.read()

 # Acquire frame and resize to expected shape [1xHxWx3]
 frame = frame1.copy()
 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 frame_resized = cv2.resize(frame_rgb, (width, height))
 input_data = np.expand_dims(frame_resized, axis=0)

Section 5: Normalisation pixel values and object detection
 # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
 if floating_model:
 input_data = (np.float32(input_data) - input_mean) / input_std

 # Perform the actual detection by running the model with the image as input
 interpreter.set_tensor(input_details[0]['index'],input_data)
 interpreter.invoke()

 # Retrieve detection results
 boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box
coordinates of detected objects
 classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected
objects
 scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected
objects
 #num = interpreter.get_tensor(output_details[3]['index'])[0] # Total number of detected
objects (inaccurate and not needed)

 # Loop over all detections and draw detection box if confidence is above minimum
threshold
 for i in range(len(scores)):
 if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0) and labels[int(classes[i])]
== stair):

 # Get bounding box coordinates and draw box
 # Interpreter can return coordinates that are outside of image dimensions, need to
force them to be within image using max() and min()
 ymin = int(max(1,(boxes[i][0] * imH)))
 xmin = int(max(1,(boxes[i][1] * imW)))
 ymax = int(min(imH,(boxes[i][2] * imH)))
 xmax = int(min(imW,(boxes[i][3] * imW)))
 cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
 object_present = 1

42

 # Draw label
 object_name = labels[int(classes[i])] # Look up object name from "labels" array
using class index
 label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
 labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
0.7, 2) # Get font size
 label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close
to top of window
 cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0],
label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text
in
 cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 0), 2) # Draw label text

 #calculate centre rectangle
 x_centre = (xmin + xmax)/2
 x_centre = int(x_centre)
 cv2.line(image, (x_centre, 0), (x_centre, imH), (255, 0, 0), 2)

 #calculate centre image
 img_centre = imW/2
 img_centre = int(img_centre)
 cv2.line(image, (img_centre-20, 0), (img_centre-20, imH), (0, 0, 255), 2)
 cv2.line(image, (img_centre+20, 0), (img_centre+20, imH), (0, 0, 255), 2)

 ####Robot Movement#######
 if (object_present == 1):
 if ((forward > 6.0 and left > 6.0 and right > 6.0 and bottom < 11.0)and(x_centre
> img_centre-20 and x_centre < img_centre+20)):
 mot.Forward()

 elif (x_centre < img_centre-20):
 left = ult.L_distance()
 if (left < 6.0):
 mot.Forward()
 else:
 mot.Left()
 elif (x_centre > img_centre+20):
 right = ult.L_distance()
 if (right < 6.0):
 mot.Forward()
 else:
 mot.Right()

43

 elif ((x_centre > img_centre-20) and (x_centre < img_centre+20)):
 mot.Forward()
 forward = ult.F_distance()
 bottom = ult.B_distance()
 if (forward < 6.0):
 print('Ascending')
 break
 elif (bottom > 11.0 and x == 'D'):
 print('Descending')
 break
 if (object_present == 0):
 if (bottom > 11.0 and x == 'D'):
 print('Descending')
 break
 elif (right < 6.0):
 mot.Left()
 elif (left < 6.0):
 mot.Right()
 else :
 mot.Forward()
 elif((forward < 6.0 or bottom > 11.0) and (object_present == 1)):
 break

Section 6: to draw framerate in corner of frame
 cv2.putText(frame,'FPS:
{0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),
2,cv2.LINE_AA)

 # All the results have been drawn on the frame, so it's time to display it.
 cv2.imshow('Object detector', frame)

 # Calculate framerate
 t2 = cv2.getTickCount()
 time1 = (t2-t1)/freq
 frame_rate_calc= 1/time1

Clean up
cv2.destroyAllWindows()
videostream.stop()
GPIO.cleanup()

44

4.3 Experiment Setup

Before proceed to obtain the result in this project, a few preparations have to be made in
order to get the correct data. The first preparation is to model the casing of the Rovision
robot to hold the components in the right place. Solidwork software is used to design a
simple casing that can placed the component and then the model is print out using 3d
printer. It took 13 hours to finish printing the model. The circuit in Figure 3.2 is applied into
the casing so that the camera and the ultrasonic sensors placed in the right position.

Figure 4.10: Coding for Adding Line to the Bounding Box and Frame

Figure 4.11: Motor.py and Ultrasonic.py Python Script

45

In order to create a robot that can move toward the desired destination, the python script
need to be edited to make the robot know the position. After inserting the object detection
API in the raspberry pi, a python file named “TFLite_detection_webcam.py” has been
changed by adding code that can create a center line for the bounding box and the frame.
The red lines indicate the center line for the frame while the blue line is the center line for
the bounding box as shown in Figure 4.10.

In addition, extra script is created for the ultrasonic and motor to work with
“TFLite_detection_webcam.py” script. The file has been named “Ultrasonic.py” and
“Motor.py” as shown in Figure 4.11. The next step is to find the suitable place to test the
system accuracy. A random place can be used to test the system whether staircase is
present or not. In this project, the experiment is done at staircase at Block D Mahallah Ali
as we want to test either the Rovision robot can detect and move toward the stair or it fail
to detect. Figure 4.12 show some of the stairs where the Rovision is test out.

Figure 4.12: Experiment Venue at Mahallah Ali, IIUM

46

5 Chapter 5: Results and Analysis

5.1 Overview

In this chapter, results from the Rovision experimentation are discussed. The
performance of the trained model of object detection has been observed based on the
input and output given from the training data. A system can be observed through the
efficiency of the machine to detect targeted object precisely. The result can be seen
through the webcam output displayed on the computer screen while the robot is running.
The trained data also obtain through the TensorBoard website prepared by TensorFlow
while training the data. By setting up the number of epoch and layers of the neural
network, it will affect the performance of the neural network model either to be more
accurate or less accurate.

5.2 Results and Analysis

5.2.1 Accuracy of Ultrasonic Sensors

The ultrasonic sensor is one of the most important components in executing this project.
Having accurate sensors is crucial as it affect the reliability of the machine. As ultrasonic
sensor is used to determine the distance between the machine and the obstacle, it needs
to calculate the distance precisely to avoid machine to hit the obstacle.

Four different distances have been setup to test the accuracy of the ultrasonic sensors.
The distance used in this test will be used in the Rovision. Table 5.1 illustrate the result
obtained from the accuracy test.

The accuracy of all ultrasonic sensors obtained from the test illustrate in Table 5.1 shows
that the ultrasonic sensors are in good condition and can detect the correct distance
accurately. 90% accuracy can indicate that the sensors can perform well for this project.

47

Table 5.1: The Result for Ultrasonic Sensor Accuracy Test

Ultrasonic

sensor

Distance

(5.0 cm)

Distance

(10.0 cm)

Distance

(20.0 cm)

Distance

(40.0 cm)
Accuracy

(%)

Front 4.5 cm 9.3 cm 19.0 cm 39.7 cm 94.25

Bottom 4.9 cm 10.0 cm 20.2 cm 40.0 cm 99.25

Right 4.8 cm 10.2 cm 19.8 cm 39.8 cm 98.00

Left 4.8 cm 10.0 cm 20.1 cm 39.0 cm 98.50

5.2.2 TensorFlow Training Result

In training the ssd mobilenet object detection model for ascending and descending
staircase detection, the neural network for the deep learning has been setup in the script
file name “ssd mobilenet v2 quantized 300x300 coco” which represent the name of the
model. In the script, the layer for the neural network has been set to 6 layers referred to
Figure 5.1 with batch size of 6 and 20k steps. The epoch for this model can be identify by
dividing the number of steps with total image in train dataset which is 800 and multiply
with batch size. The epoch is 125.

Figure 5.1: Layer can be determine by this line of code

The ssd mobilenet object detection model was trained using TensorFlow software where
the best result of the model took about 12 hours of training to ensure the total loss in the
training to be below two. It is the most suitable value for the loss as it indicates the model
is perfectly trained. If the loss is too lower than two, the model might be overtrained and if
it higher than two, it might be not enough trained and has problem in accuracy to detect
staircase. The model then has been tested the accuracy by importing random stair image.
Table 5.2 and Figure 5.2 illustrate the total loss value drop as the train session start. The

48

value of the total loss is taken every 1000 steps in the training session. A step is one
operation to update the weights of the model. The number of steps is exactly the number
of times the weights will be updated by the optimizer. It is evident from Figure 5.3 that the
error minimization is reduced towards zero. The result of the test model can be seen in
Figure 5.4, and Figure 5.5.

Figure 5.2: SSD Structure with 6 Convolution Layers for Rovision project

Figure 5.3: Graph of Error Minimisation

0
2
4
6
8

10
12
14
16
18
20

Total Loss

Total Loss

49

Table 5.2: Total Loss Value Every 1000 Steps

Step Total Loss

0 18.56
1000 6.004
2000 5.013
3000 4.388
4000 4.019
5000 3.845
6000 3.72
7000 3.543
8000 3.444
9000 3.373

10000 3.272
11000 3.163
12000 3.101
13000 3.049
14000 3.015
15000 2.956
16000 2.888
17000 2.695
18000 2.236
19000 1.988
20000 1.988

The ssd mobilenet object detection model was trained until 20,000 steps with the total
loss = 1.988. At 20,000 steps, it has the lower total loss which mean the system has high
accuracy in detecting the staircase compared to previous steps. Continuing the training
might lead to overtrained model that can cause error in detecting staircase.

The results of the training indicate that the model has been well trained in the TensorFlow
software as the accuracy in detecting the desired object mostly around 90% and above
as it can be referred to Figure 5.4 that depict 96% and 100% accuracy for descending
staircase detection and Figure 5.5 that depict 94% and 100% accuracy for ascending
staircase detection. Thus, the model can be used to implement in the Rovision robot as
the accuracy of the model can make Rovision more accurate and reliable to the visually
impaired people.

50

Figure 5.4: Result of Detecting Descending Staircase After Training the Model

Figure 5.5: Result of Detecting Ascending Staircase After Training the Model

51

5.2.3 Performance of TensorFlow Lite on Raspberry

Pi (Camera)

The used of TensorFlow Lite is to make the object detection algorithm can be used in
small computing power devices. After obtaining the result of training model, the frozen
graph of the trained model was converted to TensorFlow Lite files where it will be used in
the raspberry pi.

Ten videos have been recorded for every five times trial of Rovision detecting ascending
staircase and 5 times trial for detecting descending staircase using Rovision webcam.
Each length of the video is set to 1 minute and the frame is taken for every second in the
video which is 60 frames. Every frame taken from the video will be analyze the detection
of the system toward the staircase either it can detect correctly or there is still error in
detecting staircase.

The accuracy of the system is calculated using the formula (7) which use the value from
true positive, true negative, false positive and false negative that can be referred in
Chapter 3, Section 3.6. Table 5.3 and Table 5.4 illustrates the result of the system
accuracy based on ascending and descending conditions.

Table 5.3: The Accuracy of Ascending Staircase

Ascending
True

Positive

True

Negative

False

Positive

False

Negative

Accuracy

(%)

Test 1 60 0 0 0 100.00

Test 2 54 0 0 6 90.00

Test 3 60 0 0 0 100.00

Test 4 60 0 0 0 100.00

Test 5 56 0 0 4 93.33

 Average Percentage 96.66

52

Table 5.4: The Accuracy of Descending Staircase

Descending
True

Positive

True

Negative

False

Positive

False

Negative

Accuracy

(%)

Test 1 56 0 0 4 93.33

Test 2 53 2 0 5 91.66

Test 3 55 0 0 5 91.66

Test 4 60 0 0 0 100.00

Test 5 56 3 0 1 98.33

 Average Percentage 94.96

The result in the Table 5.3 and Table 5.4 shows that the Rovision has successfully detect
the ascending and descending staircase with high average percentage of accuracy which
are 96.66% for ascending detection and 94.96% for descending detection. Thus, the
results indicate that Rovision can accurately distinguish between ascending and
descending staircase with less error occur during the process.

5.2.4 Performance of TensorFlow Lite on Raspberry

Pi (Movement)

Referring to the System Flowchart in Figure 3.2, The main purpose of this project is to
make the Rovision robot to be able to detect and move toward the staircase whenever
the staircase present. The system also needs to be able to distinguish between the
ascending and descending staircase. As for the result, the robot only performs the
detection and movement part only. The robot will break the loop whenever it in front of the
stair (ascending or descending). The movement of the robot either it moves forward, turn
right, or left and move backward was recorded in the terminal in raspberry pi. As can be
seen in Figure 5.6 and Figure 5.7, Rovision will navigate by determine the distance
between the blue line and the red line shown in both figures. The blue line represents the

53

center line of the Area of Detection Box (green box) and red line represent the center of
the frame. As the blue line goes to the left of red line, the robot will turn left and if blue line
on the right side, robot will act vice versa. The decision of Rovision will be encountered
by the ultrasonic sensors signal whenever it detects obstacle. For instance, if the blue line
is on left side of red line, but ultrasonic sensor detects present of obstacle like wall, the
Rovision will keep moving forward until it save to turn.

Figure 5.6: Result of Detecting Ascending Staircase

Two red line indicates the tolerance given to make Rovision run smoothly. The tolerance
helps the Rovision to move forward whenever the blue line is between both red line, which
mean the Rovision will not only move left and right all time. The tolerance given is 20
pixels from center of the frame. Between two red line, it consists total of 40 pixels. The
tolerance can be modified by changing the value in the coding that can be referred in
Section 4.2: Python Programming as shown in Figure 5.7.

54

Figure 5.7: Result as Rovision Closed to Ascending Staircase

The terminal will print out the result whenever it found the ascending or descending
staircase. The maximum FPS (frame per second) that raspberry pi 4 B+ can give is only
4FPS which is lower to obtain smooth real-time video. It is recommended to have at least
10 FPS to perform smooth image processing to get better result especially for mobile
robot as shown in Figure 5.7.

Nevertheless, the lack of FPS not affect the performance of the Rovision as the Rovision
be able to accurately detect the ascending and descending staircase with high accuracy
and be able to reach the staircase. Figure 5.8 and Figure 5.9 depicts the on-going process
of detecting and movement of the robot toward the ascending and descending staircase
respectively.

55

Figure 5.8: Result of Detecting Descending Staircase

Figure 5.9: Result as Rovision Detect Descending Staircase

56

5.3 Discussion

Based the result form the experiment, it shows that the robot can perform all the
predetermined tasks successfully. The Rovision robot able to detect and differentiate
between the ascending and descending staircase accurately using the object detection
image processing model. With all the components work in excellent condition, the
objective of this project can be achieved. From the ultrasonic sensor’s accuracy result in
Table 5.1, all the four ultrasonic sensors have the accuracy of 90% and above which
indicates that it can give accurate responses to the Rovision whenever any obstacle or
staircase present in front of the robot. For the result in Table 5.2, the losses produce by
the system drastically drop at the first 1000 steps which is from 18.56 to 6.004 and
gradually decrease to below two points at the 20000th steps. The reduction in the loss
shows that the system become more stable and be able to detect the staircase accurately.
The losses produce in the training result is the additional from localization loss and the
classification loss. Localization loss is where the error that system produce to locate the
position of the staircase in the dataset and classification loss is the error of system to
correctly classify the class of the object detected by the system. The decreasing of the
losses indicates the system become more accurate to detect stair.

As the raspberry pi performance different from the normal computer, another accuracy
test has been done to check the accuracy of the machine to detect the staircase,
ascending and descending. The result in Table 5.3 and Table 5.4 of staircase average
percentage of accuracy on raspberry pi shows Rovision can detect ascending staircase
with 96.66% accuracy and descending staircase with 94.96% accuracy. It means
Rovision can handle simple task like detecting the ascending and descending staircase
precisely. Therefore, with the implementation of image processing in Rovision really aids
the robot to improve detection of obstacle and staircase. It shows that to make the robot
more accurate in detection object, it is recommended to use different type of sensors so
that the machine can rely on all the data from different sensors. For example, this project
use camera as main sensor and ultrasonic sensor as second sensor. As the camera
cannot be rotated, it only covers the front part of the robot to “see”. With the help of
ultrasonic sensors, Rovision can make the right decision whenever it detect staircase
either move forward, turn, reverse, or stop. Even though the FPS in the real time test can
only reach up to 4FPS, it only affects the movement of the Rovision in reaching the
destination, but Rovision still has a very good performance in detecting the staircase.

57

6 Chapter 6: Conclusion & Future Work

6.1 Conclusion

In conclusion, the objectives of this project have been achieved. The Rovision robot now
has the capability to identify and differentiate between ascending and descending
staircase and can maneuver itself toward the targeted staircase. The result indicates that
the Rovision robot has potential in helping the visually impaired people to navigate and
finding the staircase in future. Based on the result of training and result on the raspberry
pi, there are plenty of room for improvement that can be done to make the robot robust.
The webcam’s FPS can be one of the components that can be improved. To smooth out
the movement of the robot, the system required at least 10 to 15 FPS. A device called
Coral USB accelerator can be used to increase the FPS on the raspberry pi to 24 to 30
FPS but the disadvantage is the device is very expensive.

6.2 Future Work

Future work is the place where the idea for improvement is delivered. In my opinion, a
PID controller can be included in future as the robot can be much more stable in navigating
to staircase. The PID controller can be used whenever the blue line is between the red
line. A motor decoder and gyro sensor also can be included in the machine to be able for
the user to control the speed of the robot movement and to enhance the stability during
navigating. Thus, by doing such improvement mention above, Rovision is ready to be
used by the visually impaired people to aids them on their daily activities.

58

6 REFERENCE

Adiwahono, A. H., Saputra, B., Chang, T. W., & Yong, Z. X. (2014). Autonomous stair
identification, climbing, and descending for tracked robots. 2014 13th International
Conference on Control Automation Robotics and Vision, ICARCV 2014,
2014(December), 48–53. https://doi.org/10.1109/ICARCV.2014.7064278

Alake, R. (2020, February 6). A Beginner’s Introduction To TensorFlow Lite | by Richmond
Alake | Towards Data Science. Towards Data Science.
https://towardsdatascience.com/a-beginners-introduction-to-tensorflow-lite-
924320deed5

Ertuğrul, Ö. F. (2018). A novel type of activation function in artificial neural networks:
Trained activation function. Neural Networks, 99, 148–157.
https://doi.org/10.1016/j.neunet.2018.01.007

Farooq, U., Amar, M., Ul Haq, E., Asad, M. U., & Atiq, H. M. (2010). Microcontroller based
neural network controlled low cost autonomous vehicle. ICMLC 2010 - The 2nd
International Conference on Machine Learning and Computing, 96–100.
https://doi.org/10.1109/ICMLC.2010.71

Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Functions in
Artificial Neural Networks. Journal of Physics: Conference Series, 1237(2).
https://doi.org/10.1088/1742-6596/1237/2/022030

Forson, E. (2017, November 18). Understanding SSD MultiBox — Real-Time Object
Detection In Deep Learning | by Eddie Forson | Towards Data Science. Towards
Data Science. https://towardsdatascience.com/understanding-ssd-multibox-real-
time-object-detection-in-deep-learning-495ef744fab

Galvez, R. L., Bandala, A. A., Dadios, E. P., Vicerra, R. R. P., & Maningo, J. M. Z. (2019).
Object Detection Using Convolutional Neural Networks. IEEE Region 10 Annual
International Conference, Proceedings/TENCON, 2018-Octob(October), 2023–
2027. https://doi.org/10.1109/TENCON.2018.8650517

Łabȩcki, P., Walas, K., & Kasinski, A. (2011). Autonomous stair climbing with multisensor
feedback. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1), 8159–
8164. https://doi.org/10.3182/20110828-6-IT-1002.02747

Mahmood, N. H., Ahmad, A. H., & Omar, C. (2015). Sonar Assistive Device for Visually
Impaired People Jurnal Teknologi Sonar Assistive Device for Visually Impaired
People. April. https://doi.org/10.11113/jt.v73.4404

Masood, M. U., Sami, M. A., Sohail, H., Mujtaba, M., Siddique, M. A., Akram, H., Rashid,
N., Tiwana, M. I., & Iqbal, J. (2017). Design and development of a semi-
autonomous stair climbing robotic platform for rough terrains. International
Conference on Control, Automation and Systems, 2017-Octob(Iccas), 212–217.
https://doi.org/10.23919/ICCAS.2017.8204443

59

Medina-Santiago, A., Camas-Anzueto, J. L., Vazquez-Feijoo, J. A., Hernández-De León,
H. R., & Mota-Grajales, R. (2014). Neural control system in obstacle avoidance in
mobile robots using ultrasonic sensors. Journal of Applied Research and
Technology, 12(1), 104–110. https://doi.org/10.1016/S1665-6423(14)71610-4

Mihankhah, E., Kalantari, A., Aboosaeedan, E., & Taghirad, H. D. (2009). Autonomous
Staircase Detection and Stair Climbing for a Tracked Mobile Robot using Fuzzy
Controller. 1980–1985.

Nada, A., Mashelly, S., Fakhr, M. A., & Seddik, A. F. (2015). Effective Fast Response
Smart Stick for Blind People. April. https://doi.org/10.15224/978-1-63248-043-9-29

Nagasawa, K., Fukumura, N., & Uno, Y. (2005). A Forward-Propagation Learning Rule
for Acquiring Inverse Models in Multilayered Neural Networks. 88(2), 1066–1074.
https://doi.org/10.1002/ecjb.20148

Roumeliotis, S. I., Michael, C., & Matthies, L. (2002). Multi-Sensor , High Speed
Autonomous Stair Climbing. 733–742.

Rossum, G. V. (2001), An Introduction to Python, Release 2.2.2, page 1-111, Network
Theory Ltd.

Sumit, S. (2018, December 16). A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way | by Sumit Saha | Towards Data Science. Towards Data
Science. https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Toha, S. F and Tokhi, M. O (2008), MLP and Elman recurrent neural network modelling
for TRMS, In Proceedings of 7th IEEE International Conference on Cybernetic
Intelligent Systems (CIS08), London, UK, 9-10 September 2008, pp. 391-396.

Thu, A. M. M., Aung, M. T. S., & Okada, T. (2019). Autonomous Stairs Ascending and
Descending Algorithm for Tri-Star Wheeled Robot. ICARM 2018 - 2018 3rd
International Conference on Advanced Robotics and Mechatronics, 328–333.
https://doi.org/10.1109/ICARM.2018.8610676

Tydén, A., & Olsson, S. (2020). Edge Machine Learning for Animal Detection,
Classification, and Tracking. 59.

Wolff, C. (2017, December 5). Comparing Image-Classification Systems: Custom Vision
Service vs. Inception | CSE Developer Blog.
https://devblogs.microsoft.com/cse/2017/12/05/comparing-transfer-learning-
systems-custom-vision-service-vs-inception-vs-mobilenet/

60

7 ABOUT THE AUTHORS
Siti Fauziah Toha (B.Eng’03-M’06-PhD’10), is currently an Associate
Professor at the Department of Mechatronics Engineering, International
Islamic University Malaysia (IIUM). She received B. Eng (Hons) in
Electrical and Electronics Engineering from University Technology
Petronas and later received MSc from Universiti Sains Malaysia in
electrical engineering. She was then completed her Ph.D in Automatic
Control and Systems Engineering from The University of Sheffield in

2010.
She was later join the Perusahaan Otomobil Nasional Berhad (PROTON) Malaysia as a
control expert consultant, working on AI-based battery management system for electric
vehicle. Her current research interest spanning over the Modelling and Analysis of
Complex System (MACS), Control Algorithms and Artificial Intelligence Optimisation,
Assistive Devices and Bio-inspired robotics, Green Renewable Energy. Dr Toha is a
senior member of IEEE and also a Professional Engineer with the Board of Engineers
Malaysia (BEM) as well as a Chartered Engineer with Engineering Council, The Institution
of Engineering and Technology, United Kingdom. She also served as the Engineering
Accreditation Council (EAC) panel for BEM. She is also an active member of Young
Scientist Network, Academy of Sciences Malaysia (YSN-ASM) and appointed as Co-chair
for Science Policy Working Group (2018).

Ahmad Syahrin Idris (B.Eng’03-M.Phil’11-Dr.Eng’18), is currently an
Assistant Professor at the School of Electronics and Computer
Science, University of Southampton Malaysia (UoSM). He received his
B. Eng (Hons) in Electrical and Electronics Engineering from University
Technology Petronas, Malaysia and received his M.Phil from The
University of Sheffield, UK in Electronic and Electrical Engineering. He
later received his PhD in Opto-electronics from Kyushu University,
Japan.

After his B.Eng degree, he joined Intel as a Product Development Engineer specializing
in developing design-for-test solutions for Intel chipset products. While in the UK, he was
also a researcher at the University of Sheffield specializing in the fabrication and
characterization of III-V semiconductors for APD and PIN photodetectors. After his M.Phil
degree, he joined Freescale Semiconductor as a Senior Test Development Engineer
developing test solutions for automotive and industrial microcontrollers. His current
research interests are in fabrication and characterization of opto-electronic devices and
developing design-for-test solutions for microelectronic circuits. Dr. Idris is also a

61

Professional Engineer with the Board of Engineers Malaysia and The Institute of
Engineers Malaysia.

8
Abdur Razzaq Abd Halim was born on December 14th, 1997 at
General hospital, Kuala Lumpur, Malaysia. He received his Bachelor
of Engineering in Mechatronic (B. Eng) in 2021 and currently pursed
Master of Sciences (Msc) in the field of Electronics Engineering, at
International Islamic University Malaysia.
His research interests related to development of fluidic channels and
packaging for screening of COVID-19. His recent work is about
designing the packaging of the sensors while developing the readout

circuit on detecting the COVID-19 virus. This research able to assist in preventing the
spread of the infectious viruses as the area of interest in this research is related to early
stage patient of COVID-19.

AI-BASED LEVEL DETECTION AND OPTIMISATION OF
ASSISTIVE ROBOT MANEUVERABILITY

Assistive devices for blind and visually impaired people are one of the technologies that
famous among the researchers. There are many devices has been developed by the
researcher in order to aid the visually impaired people to move around. One of the
challenges faces by the blind and visually impaired people is stair. Using traditional
method, the present of the staircase cannot be detected in a safe distance. Rovision is
one of the devices that has the capability to guide the user to move to desired place
without hitting any obstacle or object. In mobile robot, sensors play important roles in
guiding the robot by sending the data of the surrounding for the robot to execute the
action. Camera and ultrasonic sensor are two sensors that use in the Rovision to
navigate the robot in safe distance while detecting the staircase. Image processing is
one of the best methods in detecting staircase. It has a capability to learn by its own
using the training dataset. By training the dataset, the system be able to identify the
staircase and the position inside the camera frame to help Rovision to maneuver and
guide the user safely. Rovision also use ultrasonic sensors to avoid obstacle in
surrounding in order to have clear and safe path for the visually impaired person. This
AI-Based Level Detection and Optimisation of Assistive Robot Maneuverability book will
be useful for postgraduate students as well as final year undergraduate students
researching on robotics area especially using the latest python software with focus on
artificial intelligence techniques.

Centre for Professional Development (CPD)
International Islamic University Malaysia
Jalan Gombak,
Selangor Darul Ehsan,
MALAYSIA
Tel: +603-6421 5914/ Fax: +6421 5915
Email: admin_cpd@iium.edu.my
Website: www.iium.edu.my/centre/cpd

	CPD Logo
	CPD Logo
	1 PREFACE
	2 ACKNOWLEDGEMENT
	3 CONTENT
	4 LIST OF FIGURES
	5 LIST OF TABLES
	1 Chapter 1: Introduction
	1.1 Overview
	1.2 Problem Statement

	2 Chapter 2: System Overview
	2.1 Recent Development of Assistive Device
	2.2 Autonomous Staircase Detection Robot
	2.3 Artificial Neural Network Controller (ANN)
	2.3.1 Overview
	2.3.2 Artificial Neural Network Weight (Parameter)
	2.3.3 Activation Function
	2.3.4 Forward and Backward Propagation

	2.4 Image Processing in Autonomous Robot
	2.4.1 Overview
	2.4.2 Object Identification/ Recognition
	2.4.3 Convolution Neural Network
	2.4.4 Single Shot Detection (SSD)
	2.4.5 MobileNet Inception in Single Shot Detection
	2.4.6 TensorFlow VS TensorFlow Lite

	3 Chapter 3: System Design
	3.1 Overview of Rovision System
	3.2 Performance Metrics
	3.3 Hardware

	4 Chapter 4: System Development
	4.1 Collecting Training and Validation Data
	4.1.1 Collecting Image for Training and Test Data
	4.1.2 Labelling Image
	4.1.3 Installation of TensorFlow Framework
	4.1.4 Anaconda IDE
	4.1.5 Data Training Process
	4.1.6 TensorFlow Raspberry Pi

	4.2 Python software programming
	4.3 Experiment Setup

	5 Chapter 5: Results and Analysis
	5.1 Overview
	5.2 Results and Analysis
	5.2.1 Accuracy of Ultrasonic Sensors
	5.2.2 TensorFlow Training Result
	5.2.3 Performance of TensorFlow Lite on Raspberry Pi (Camera)
	5.2.4 Performance of TensorFlow Lite on Raspberry Pi (Movement)

	5.3 Discussion

	6 Chapter 6: Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work

	6 REFERENCE
	7 ABOUT THE AUTHORS
	8

