SOLANUM TORVUM FOR HYPERTENSION IN ‘KITAB AL-TIBB’: A SYSTEMATIC REVIEW ON THE SCIENTIFIC EVIDENCE

AZLINI ISMAIL
Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
dr_azlini@iium.edu.my
INTRODUCTION
Hypertension is a condition of high blood pressure.

1.13 billion of cases in 2015 throughout the world.

Local prevalence;
- 2000 -2010: 28.7%
- 2010 -2017: 29.2%

Uncontrolled blood pressure leads to CVS-associated mortality.

(Anuar & Ismail, 2020)
Available antihypertensive medications;
- undesirable side effects.
- high cost.

Alternative herbal ethno-medicinal plants (Ayurvedic & Traditional Chinese medicines).

Malay ethno-medicinal plants is yet under-explored.
Malays - have records utilizing local resources in dealing with various diseases/conditions.

Kitab Al-tibb:

✓ A Malay medical manuscript by Haji Ismail bin Haji Mustafa Pontianak.

✓ Malay medical experiences - 100 herbs/plants for 15 diseases.

2 plants for treatment of hypertension,

 ✓ terung pipit

 ✓ setawar

No further statement on which ‘setawar’ species, thus only Solanum torvum was included in this review.

Kitab Al-tibb:

✓ Kitab Al-tibb: Malay medical manuscript by Haji Ismail bin Haji Mustafa Pontianak.

✓ Malay medical experiences - 100 herbs/plants for 15 diseases.
SOLANUM TORVUM

- Local names:
 - Terung pipit in Malay (Abdul Hamid & Fauzi, 2012)
 - Turkey berry (Mohan et al., 2009)
 - Eggplant (Nwanna et al., 2014)
 - Sundaikai or kodusonde in India (Rammohan et al., 2011)
 - Ma khaeong in Thailand (Inta et al., 2013)
 - Bang Guo in China (Yang et al., 2020)

- Family: Solanaceae
- An erect shrub and widely-branched (Mohan et al., 2009).
- Found in Africa, West Indies (Mohan et al., 2009), Asia, and South America (Li et al., 2014).
- Fruits are edible, used as vegetables among Malay, Thai, Indian, and Chinese.
PROBLEM STATEMENT

No systematic study has been done to establish body of evidences for the use of S. torvum for hypertension as stated in ‘Kitab al-Tibb’ or ‘Kitab Tibb Pontianak’.

HYPOTHESIS

The use of S. torvum for hypertension as stated in ‘Kitab al-Tibb’ or ‘Kitab Tibb Pontianak’ is supported by the modern scientific evidences.

OBJECTIVE

To conduct systematic review asserting the use of S. torvum for hypertension as stated in ‘Kitab al-Tibb’ or ‘Kitab Tibb Pontianak’ in the modern scientific evidence.
METHODOLOGY
SEARCH STRATEGY

"Solanum torvum" OR "S. torvum" AND ("antihypertensive" OR "anti-hypertensive" OR "diuretic" OR "vasodilation" OR "ACE inhibitor" OR "angiotensin converting enzyme inhibitor" OR "blood pressure").

• No date and language restrictions.

International Conference on Malay Medical Manuscripts 2020, 15-16th December 2020
INCLUSION CRITERIA

All articles on S. torvum with either:

- **In vivo study** (effect on blood pressure or diuretic effect)
- **In vitro studies** on isolated blood vessels
- **In vitro studies** regarding inhibition of angiotensin-converting enzymes (ACE) - related to antihypertensive mechanism
- Field surveys on the use for hypertension
- Chemical analysis

EXCLUSION CRITERIA

Articles that were **not** original research articles i.e.:

i. review articles
ii. book chapters
iii. conference abstracts and papers
iv. short communications
v. other types of sources
FINDINGS
122 records;
- 110 results (Science Direct)
- 11 results (SCOPUS)
- 1 result (PUBMED)

3 duplicates identified and removed

119 records screened

63 records screened (title & abstract) for relevance with the scope of this review

Records included in this review, n=17

FLOW CHART FOR SYSTEMATIC REVIEW

56 records excluded - not original research articles

46 records excluded - did not fulfil inclusion criteria

International Conference on Malay Medical Manuscripts 2020, 15-16th December 2020
RECORDS AND TYPES OF STUDY

<table>
<thead>
<tr>
<th>RECORD NO.</th>
<th>TYPE OF STUDY</th>
<th>REFERENCES</th>
</tr>
</thead>
</table>
| 1 | • In vitro ACE inhibition study.
 • Traditional use for hypertension. | Simaratanamongkol et al. (2014a) |
| 2 | • In vitro ACE inhibition study. | Simaratanamongkol et al. (2014b) |
| 3 | • In vitro ACE inhibition study. | Nwanna et al. (2014) |
| 4 | • Traditional use for hypertension.
 • In vivo study on rats (high-fructose diet).
 • In vivo vascular reactivity test with catechomines. | Mohan et al. (2009) |
| 5 | • In vivo study on anesthetized normotensive rats (intravenous route).
 • Study on the mechanism of action. | Nguelefack et al. (2008) |
| 6 | • In vivo study on rats on normotensive and L-NAME treated rats.
 • In vitro study on isolated aorta rings.
 • Study on the mechanism of contractile effect.
 • Diuretic study. | Nguelefack et al. (2009) |
| 7 | • Diuretic study. | Rammohan et al. (2011) |

*ACE: angiotensin converting enzyme
Records and Types of Study

<table>
<thead>
<tr>
<th>RECORD NO.</th>
<th>TYPE OF STUDY</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Traditional use of S. torvum for hypertension. Chemical analysis study on aerial parts.</td>
<td>Lu et al. (2011)</td>
</tr>
<tr>
<td>9</td>
<td>Chemical analysis study on fruits.</td>
<td>Pérez Colmenares et al. (2013)</td>
</tr>
<tr>
<td>10</td>
<td>Chemical analysis study on aerial parts. (steroidal glycosides).</td>
<td>Lu et al. (2009)</td>
</tr>
<tr>
<td>11</td>
<td>Chemical analysis study on fruits (steroidal glycosides).</td>
<td>Li et al. (2014)</td>
</tr>
<tr>
<td>12</td>
<td>Chemical analysis study (polyphenols, carotenoids, and ascorbic acid content).</td>
<td>Andarwulan et al. (2012)</td>
</tr>
<tr>
<td>13</td>
<td>Chemical analysis study (non-alkaloidal constituents).</td>
<td>Mahmood et al. (1983)</td>
</tr>
<tr>
<td>14</td>
<td>Traditional use of dried fruits of S. torvum for hypertension.</td>
<td>Esakkimuthu et al. (2016)</td>
</tr>
<tr>
<td>15</td>
<td>Traditional use of S. torvum decoction for hypertension.</td>
<td>Inta et al. (2013)</td>
</tr>
<tr>
<td>16</td>
<td>Traditional use of S. torvum as plant with diuretic effect.</td>
<td>Sivapriya & Leela (2007)</td>
</tr>
<tr>
<td>17</td>
<td>Traditional use of S. torvum fruits for hypertension.</td>
<td>Ong & Nordiana (1999)</td>
</tr>
</tbody>
</table>
FREQUENTLY-USED PARTS OF S. TORVUM

- Fruits: 70%
- Aerial parts: 12%
- Not indicated: 12%
- Leaves: 6%

COUNTRY OF ORIGIN

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of records</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>5</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1</td>
</tr>
<tr>
<td>Cameroon</td>
<td>2</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1</td>
</tr>
<tr>
<td>China</td>
<td>3</td>
</tr>
<tr>
<td>Thailand</td>
<td>3</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
</tr>
</tbody>
</table>

International Conference on Malay Medical Manuscripts 2020, 15-16th December 2020
Record #10: Lu et al. (2009)

- Four steroidal glycosides isolated from S. torvum fruits in China:
 1. solanolide 6-O-[L-rhamnopyranosyl(1 → 3)]O-D-quinovopyranoside
 2. solanolide 6-O-[D-xylpyranosyl(1 → 3)]O-D-quinovopyranoside
 3. Yamogenin 3-O-[D-glucopyranosyl(1 → 6)]O-D-glucopyranoside
 4. neochlorogenin 3-O-[D-glucopyranosyl(1 → 6)]O-D-glucopyranoside

Record #9: Pérez Colmenares et al. (2013)

- Seven steroidal glycosides isolated from S. torvum fruits in Venezuela:
 1. (25S)-26-(β-D-glucopyranosyloxy)-3-oxo-5α-furost-20(22)-en-6α-yl-O-b-D-xylpyranoside
 2. (25S)-26-(β-D-glucopyranosyloxy)-3-oxo-22α-methoxy-5α-furostan-6α-yl-O-b-D-xylpyranoside
 3. (25S)-3β-glucolpyranosyloxy)-3β-hydroxy-22α-methoxy-5α-furostan-6α-yl-O-a-L-rhamnopyranosyl(1 → 3)]O-b-D-glucopyranoside
 4. (25S)-3β-hydroxy-5α-spirostan-6α-yl-O-b-D-xylpyranoside
 5. (25S)-3β-oxo-5α-spirostan-6α-yl-O-b-D-xylpyranoside
 6. (25S)-3β-hydroxy-5α-spirostan-6α-yl-O-b-D-glucopyranoside
 7. (25S)-3β,27-dihydroxy-5α-spirostan-6α-yl-O-b-D-glucopyranoside.

Record #11: Li et al. (2014)

- Five steroidal glycosides cytotoxic compounds isolated from S. torvum fruits in China:
 1. 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3β,6α,26-triol-6-O-[α-L-rhamnopyranosyl(1 → 3)]O-β-D-quinovopyranoside
 2. 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3-one-6α,26-diol-6-O-[α-L-rhamnopyranosyl(1 → 3)]O-β-D-quinovopyranoside
 3. 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3β,6α,26-triol-6-O-[β-D-quinovopyranoside]
 4. 5α-pregn-16-en-20-one-3β,6α-diol-6-O-[α-Lrhamnopyranosyl(1 → 3)]β-D-quinovopyranoside
 5. 5α-pregn-16-en-3,20-dione-6α-ol-6-O-[α-L-rhamnopyranosyl(1 → 3)]β-D-quinovopyranoside
CHEMICAL COMPOUNDS IN S. TORVUM

Record #13: Mahmood et al. (1983)

- Nine non-alkaloidal compounds isolated from S. torvum leaves in India:
 1. 2,3,4-trimethyltriacontane
 2. octacosanyl triacontanoate
 3. S-hexatriacontanone
 4. Triacontanol
 5. 3-triatriacontanone
 6. tetraatriacontanoic acid
 7. sitosterol
 8. Stigmasterol
 9. campesterol

Record #12: Andarwulan et al. (2012)

- Do not involve isolation of compounds, but determination of polyphenols, carotenoids, ascorbic acid content of S. torvum fruits in Indonesia.

Record #8: Lu et al. (2011)

- Nine compounds isolated from S. torvum aerial parts in China:
 1. neochlorogenic 6-O-β-D-quinovopyranoside
 2. neochlorogenic 6-O-β-D-xylopyranosyl-(1→3)-β-D-quinovopyranoside
 3. neochlorogenic 6-O-α-Lrhamnopyranosyl-(1→3)-β-D-quinovopyranoside
 4. solagenin 6-O-β-D-quinovopyranoside
 5. solagenin 6-O-α-Lrhamnopyranosyl-(1→3)-β-D-quinovopyranoside
 6. isoquercetin
 7. rutin
 8. kaempferol
 9. quercetin

Antihypertensive effects of flavonoids via various underlying mechanisms (Maaliki et al., 2019).
Aqueous and methanolic extract of *S. torvum* fruits (i.v.) induced a significant reduction in arterial blood pressure of normotensive rats, comparable to verapamil (Nguelefack et al., 2008).
IN VIVO STUDY (ORAL ROUTE, NORMOTENSIVE AND L-NAME INDUCED HYPERTENSIVE RATS)

(Nguelefack et al., 2009)

• Aqueous extract of S. torvum fruits amplified the hypertensive effect of rats given N (gamma)-nitro-L-arginine methyl ester (L-NNAME, nitric oxide synthase inhibitor).
• The same effect was not observed in normotensive rats.
Aqueous extract of *S. torvum* fruits induced a marked diuretic effect in L-NAME (nitric synthase inhibitor)-treated rats.
Aqueous extract of *S. torvum* fruits have potent dose-dependent *in vitro* vasocontractile activity.

(Nguelefack et al., 2009)
IN VIVO STUDY (ORAL ROUTE, FRUCTOSE INDUCED HYPERTENSIVE RATS)

High fructose diet (fructose 10%, w/v) for induction of hypertension

6-week intervention with *S. torvum* (p.o daily)

- Orally-fed ethanolic extract significantly decreased blood pressure elevation induced by high-fructose diet.

Effect of *Solanum torvum* on blood pressure and metabolic alterations in fructose hypertensive rats

Mahaalaxmi Mohan a, b, Bhagat Singh Jaiswal a, b, Sanjay Kasture b

* a Department of Pharmacology, RECCL's Pharmacy College, Pune, Maharashtra, India
 b School of Life Sciences, University of Pune, Maharashtra, India

Fig. 1. Effect of *Solanum torvum* (100 mg/kg and 300 mg/kg, p.o., for 6 weeks) on SBP (mmHg) in fructose (10%) induced hypertensive rats. N=5, all values are expressed as mean ± SEM. All data are subjected to one-way ANOVA followed by Dunnett’s test. *p < 0.05 when compared to control and #p <0.05 when compared to fructose-fed group. F = fructose (10%), ST = *Solanum torvum*. Nif = Nifedipine.
IN VIVO STUDY (ORAL ROUTE, FRUCTOSE INDUCED HYPERTENSIVE RATS)
(Mohan et al., 2009)

High fructose diet (fructose 10%, w/v) for induction of hypertension

6-week intervention with *S. torvum* (p.o daily)

Anaesthetized with urethane

100 & 300 mg/kg (p.o) macerated ethanolic extract reduced the basal blood pressure in fructose-fed rats - comparable to standard drug, nifedipine (10 mg/kg/day, p.o.).
Ethanol extract of S. torvum fruits significantly reduced vascular reactivity to catecholamines - comparable to standard drug, nifedipine (10 mg/kg/day, p.o.).
Fruit wall methanolic extracts of *S. torvum* showed effective diuretic activity (increasing total urine output and increased sodium excretion).

DIURETIC ACTIVITY
(Rammohan et al., 2011)

Fruit wall and seed methanolic extracts of *S. torvum* (p.o) fed on normotensive Wistar rats

Table 1: Diuretic activity of seed and fruit wall extracts of *Solanum torvum*

<table>
<thead>
<tr>
<th>Name of the drug/extracts</th>
<th>Dose (mg/kg)</th>
<th>Volume of urine in ml (Mean ± SEM) After 5 hrs</th>
<th>Electrolyte excretion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cl⁻</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>0.6±0.04</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Standard (furosemide)</td>
<td>20</td>
<td>3.2±0.44</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Seed methanol</td>
<td>150</td>
<td>0.9±0.13</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1.2±0.06</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1.4±0.13</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>FruitWall methanol</td>
<td>150</td>
<td>1.7±0.04</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>2.0±0.02</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>2.3±0.13</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>
IN VITRO ANGIOTENSIN CONVERTING ENZYME (ACE) INHIBITORY STUDY

(Nwanna et al., 2014; Simaratanamongkol et al., 2014a,b)
IN VITRO ANGIOTENSIN CONVERTING ENZYME (ACE) INHIBITORY STUDY

(Nwanna et al., 2014)

- Aqueous extract of S. torvum fruits collected from Nigeria exhibited significant ACE inhibitory activity with IC\textsubscript{50} of 106 ± 0.01 µg/ml.
IN VITRO ANGIOTENSIN CONVERTING ENZYME INHIBITORY STUDY

(Simaratanamongkol et al., 2014a)

- Methanol extract (5mg/ml) of *S. torvum* fruits from Thailand exhibited significant ACE inhibition activity of 76.2%.

Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants

Arunee Simaratanamongkol¹, Kaoru Umehara¹, Hiroshi Noguchi¹, Pharkphoom Panichayupakaranant²,³,⁴

¹Department of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
²Pharmaceutical Analytical and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
³School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan

3. Results and discussion

Prior to determination of the ACE inhibitory activity of these plant extracts, the responsiveness of the assay system was calibrated with captorpril, a positive control, and it showed ACE inhibitory activity with an IC₅₀ value of 1.56 nM, which was in good agreement with a previous report (Nunes-Mamede, De Mello, & Martins, 1990). Among the sixteen extracts from eight Thai edible plants that were investigated for their ACE inhibitory activity, the methanol extract of *A. graveolens* gave the highest percentage of ACE inhibitory activity (82.3%, at a concentration of 5 mg/ml), and exhibited a significant IC₅₀ value of 1.7 mg/ml, followed by the methanol extract of *S. torvum* (76.2%, at a concentration of 5 mg/ml) and the ethyl acetate extract of *A. occidentale* (64.2%, at a concentration of 5 mg/ml). The other plant extracts showed only a weak inhibitory activity with a percentage of ACE inhibitory activity lower than 60% each tested at a concentration of 5 mg/ml (data not shown). Thus, these three edible plants may be able to contribute to hypotensive effects by being inhibitors of angiotensin converting enzyme in the renin-angiotensin system. The methanol extract of *A. graveolens* was the one selected and subjected to isolation of the ACE inhibitor.
IN VITRO ANGIOTENSIN CONVERTING ENZYME INHIBITORY STUDY

(Simaratanamongkol et al., 2014b)

<table>
<thead>
<tr>
<th>Extract/Compound/Drug</th>
<th>IC<sub>50</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>1.2 mg/ml</td>
</tr>
<tr>
<td>(E)-2,3-dihydroxycyclopentyl-3-(3′,4′-dihydroxyphenyl)acrylate</td>
<td>778 µg/mL</td>
</tr>
<tr>
<td>Captopril</td>
<td>3.25 nM</td>
</tr>
</tbody>
</table>

Figure 1 - Isolation of secondary metabolites from S. torum.

(E)-2,3-dihydroxycyclopentyl-3-(3′,4′-dihydroxyphenyl)acrylate
SUMMARY &
CONCLUSION
Plausible evidences;

✓ Reduction in basal blood pressure and the blood pressure elevation induced by high fructose diet (Mohan et al., 2009).

✓ Reduced vascular reactivity to catecholamines in high fructose-induced hypertension (Mohan et al., 2009).

✓ Diuretic activity by increasing total urine output and increased sodium excretion in normotensive rats (Nguelefack et al., 2009; Rammohan et al., 2011).

✓ Significant inhibition on angiotensin-converting enzyme (Nwanna et al., 2014; Simaratanamongkol et al., 2014a, 2014b)

Implausible evidences;

i) Enhanced blood pressure elevation in L-NAME-treated rats (Nguelefack et al., 2009)

ii) Contractile effect on the isolated aorta rings of normal rats. (Nguelefack et al., 2009)

• These discrepancies actually suggest that *S. torvum* works distinctively in different animal models of induced-hypertension.
SUGGESTION

- Thus, there is a need to **conduct further study on Spontaneously Hypertensive Rats model** that mimics the essential hypertension that frequently occurs in human.

CONCLUSION

- This review found **scientific evidences from modern science supporting the use of S. torvum as mentioned in ‘Kitab al-Tibb’ for hypertension.**
REFERENCES

