

Gracilaria Algae uses introduction

Marine Algae: Chemistry and Potential

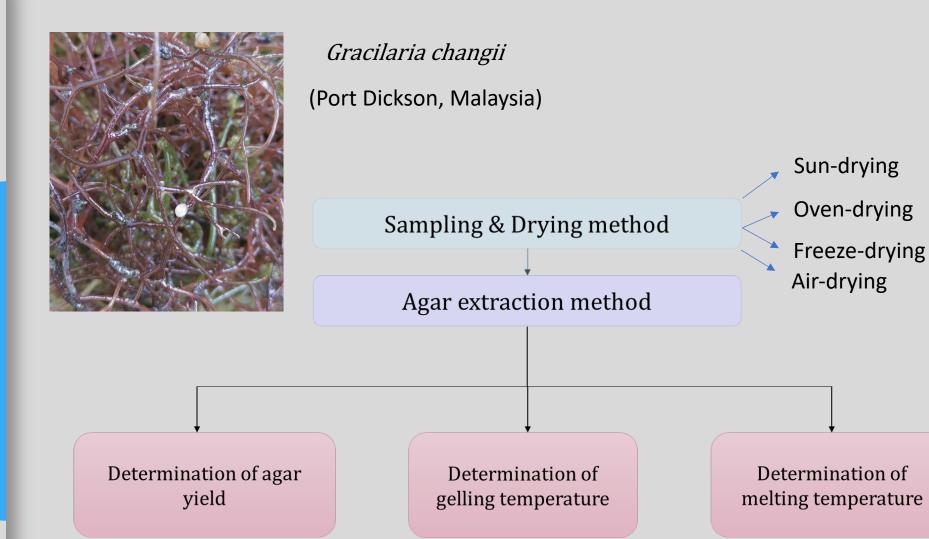
Introduction

- There are three main macroalgae taxa according to their morphological pigmentations: *Rhodophyta* (red algae), *Chlorophyta* (green algae), and *Phaeophyceae* (brown algae)
- Macroalgae are valuable marine plants that have garnered much attention from the public due to their high bioactive, nutrients and minerals content.
- Environmental factors, such as temperature, salinity, sunlight, pH, physiological status and CO₂ supply could influence the chemical composition of marine algae

Metabolites in macroalgae:

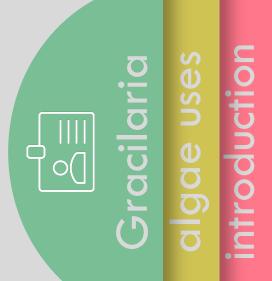
Bioactive components/metabolites	Example	Remarks
Polysaccharides	agar, alginates, galactans, carrageenans, laminarans, fucoidan and ulvans	32% to 50% of dry matter 51-56% of total fibers in green (ulvan) and red algae (agars, carrageenans and xylans), 67- 87% in brown algae (laminaria, fucus, etc)
Lipids, fatty acids and sterols	phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phoshatidic acid, fatty acids, oxylipins, sterols	1-5% of dry matter Green algae have much higher oleic and alpha-linoleic acid content Red algae have a high EPA content
Protein, amino acids		Brown algae: 5-11% Red algae: 30-40% of dry matter Green algae: 20% of dry matter
Phenolic compounds	Phloroglucinols, phlorptannins	
Vitamins and minerals		Red and brown algae (provitamin A): 20-170 ppm Red and brown algae (vitamin C): 500-3000 ppm. Vitamin B12

introduction algae uses

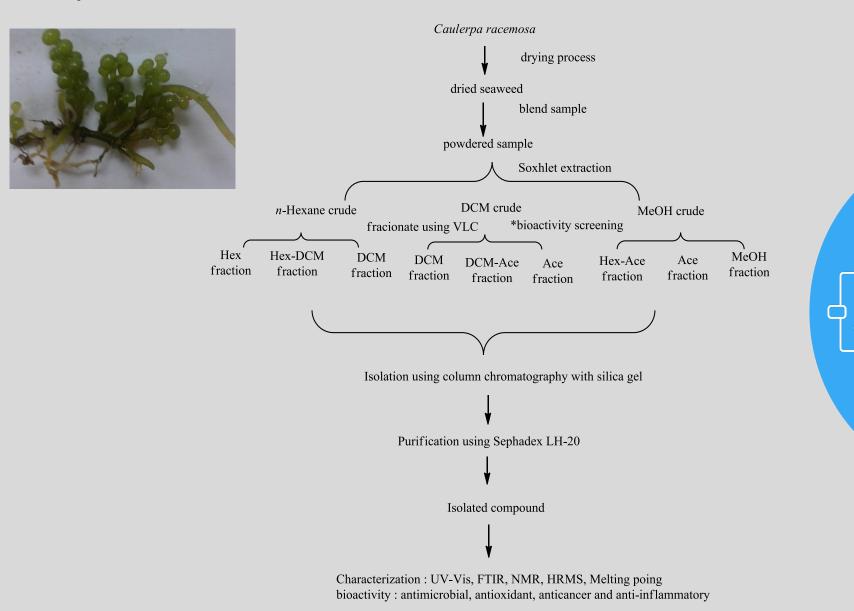

Macroalgae uses:

Food/Nutraceutical	Medicinal	Cosmetic
Hydrocolloids, ashydrocolloids or phycocolloids, as food additive (gelling, water retention, emulsifying agents)	Alginates are used in wound dressings, and production of dental moulds	Photo-protective: sargachromenol, fucoxanthin, tetraprenyltoluquinol chromane meroterpenoid, scytonemin, sargaquinoic acid
Agar is used in foods such as confectionery, meat and poultry products, desserts and beverages and moulded foods	Hormones: Melatonin and thyroid	Whitening effect: eckol, dieckol, diphlorethohydroxycarmalol, dioxynodehydroeckol, fucoxanthin, phloroglucinol
Carrageenan is used in salad dressings and sauces, dietetic foods, and as a preservative in meat and fish products, dairy items and baked goods	Red algae containing carrageenan have been used for millennia as treatments for respiratory ailments, especially intractable sinus infections and lingering pneumonias	THE BODY SHOP SEAWEED DICCONTROL CLEARAN BUCKET NO FOLL Y SURF COMBINATION / OLL Y SURF
<image/>	Antiobesity: fucoxanthin, alginates, fucoidans and phlorotannins Antiinflammatory: terpenoids, protein, peptides, amino acids, fatty acids etc. Anti-herpes simplex virus: carrageenan, fucan, sulphated polysaccharide Neuroprotective: fucoxanthin, fucosterol, fucoidan, laminarin, porphyran, saringasterol, phlorotannins Immune boosting: fucoidan	

algae uses introduction


|||| 0(]

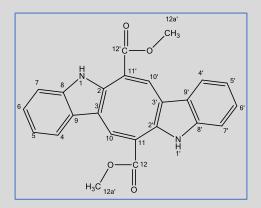
Ē



 Introduction

Drying Methods	Agar yield (%)	Gelling Temperature (°C)	Melting Temperature (°C)
Oven-drying	10.09±1.44	36.67±0.58	66±1.00
Freeze-drying	10.03±1.13	38.33±0.58	78.67 <u>±</u> 0.58
Air-drying	13.04 <u>+</u> 1.36	38.00±1.00	63.00±5.20
Sun-drying	12.11 <u>+</u> 0.59	39.67 <u>+</u> 1.15	71.00 <u>+</u> 1.00

Caulerpa racemosa



Gracilaria algae uses introduction

Ο

0

aule

Caulerpin

Cytotoxicity

Cell lines	IC ₅₀
H1299 (lung cancer)	61.43%
A549 (lung cancer)	50%
MCF-7 (breast cancer)	63.43%

Anti-inflammatory

Nitric oxide production induced by LPS on the RAW 264.7 RAW 264.7 macrophage cells : moderately reduced from 32.71 μM to 23.28

С 0

aria

aci

Ο

auler

C. lentilifera

Different drying methods will affect the nutrition content in C. lentillifera

Nutrient content:

- Moisture content
 - Ash content
- Crude fats content
- Crude fibre content
- Crude protein content
- -Crude carbohydrate content

Gracilaria algae uses

Proximate composition	Sun-dried (%)±SD	Air-dried (%)±SD
Moisture	96.23	95.72
Crude ash	51.57 ± 1.19ª	57.76 ± 1.26 ^b
Crude fat	0.42 ± 0.09 ^a	1.25 ± 0.22 ^b
Crude protein	6.61 ± 0.21ª	7.14 ± 0.09 ^b
Crude fibre	10.86 ± 1.53ª	8.88 ± 0.81ª
Carbohydrate	30.54	24.97

Caulerpa Gracilaria algae uses introduction

) |||| |0(]

 $\left| \right|$

Sargassum olygocystum

 \mathbf{V} Dried \mathbf{V} Grounded to desired size (125, 500, 1000 µm) \mathbf{V} Subjected to different extraction method (either maceration or Soxhlet extraction) With 3 solvents (methanol, acetone, ethanol) \mathbf{V} Vacuum filtered \mathbf{V} Evaporated, $T = 35-40 \text{ }^{\circ}\text{C}$ \mathbf{V} HPLC analysis

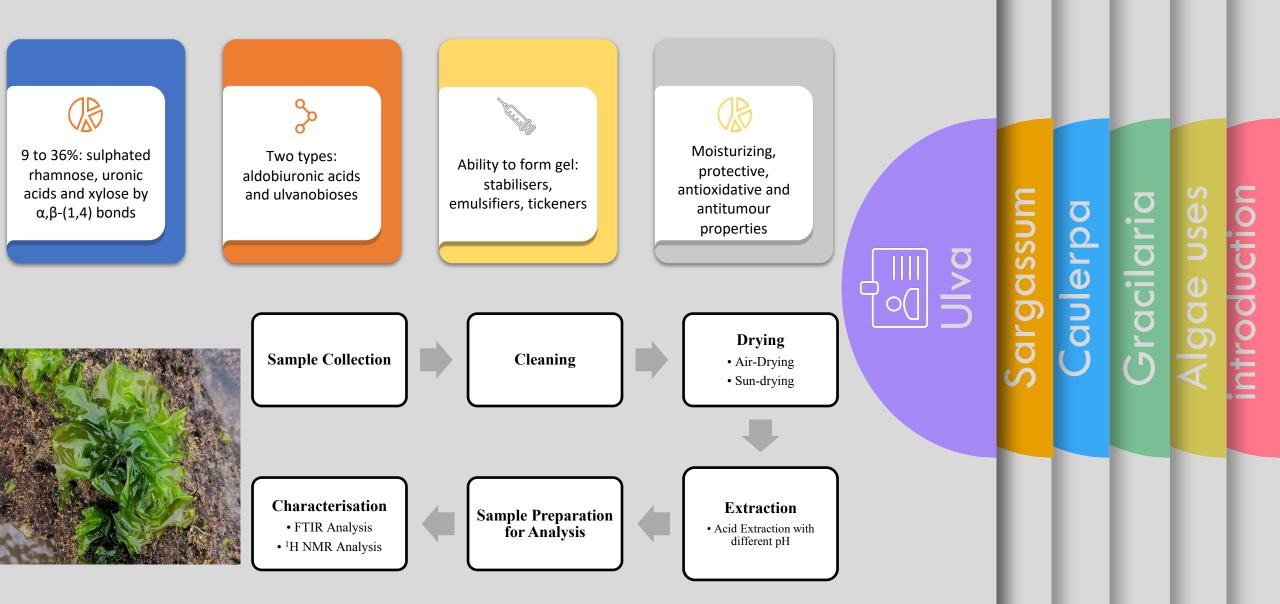
S. oligocystum

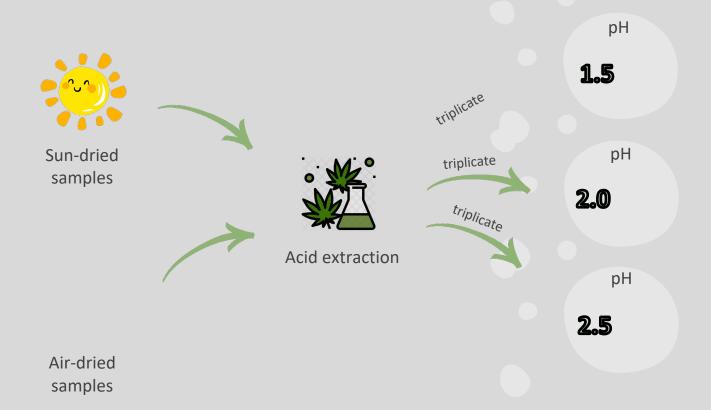
Caulerpa Gracilaria Algae uses introduction

dssum

Sargassum olygocystum

Experiment condition	Solvent	Seaweed passed through sieve size/um	Extraction Method	Yield of extract (mg/g)	Fx content in the extract (mg/ml)	Fx content (mg/g dry weight)
1	Methanol	125	Maceration	9.975 ± 16.6	2.389 ± 1.73	23.84
2	Methanol	125	Soxhlet extraction	26.79 ± 29.1	8.979 ± 7.00	240.5
3	Methanol	500	Maceration	20.73 ± 10.0	4.525 ± 6.59	93.92
4	Methanol	500	Soxhlet extraction	22.13 ± 7.02	4.896 ± 4.08	108.4
5	Methanol	1000	Maceration	24.33 ± 21.9	7.844 ± 0.65	190.8
6	Methanol	1000	Soxhlet extraction	28.73 ± 37.5	12.56 ± 6.27	359.2
7	Acetone	125	Maceration	22.03 ± 26.7	3.120 ± 2.67	68.28
8	Acetone	125	Soxhlet extraction	25.07 ± 15.5	7.084 ± 0.67	177.5
9	Acetone	500	Maceration	14.65 ± 20.0	6.829 ± 11.6	100.0
10	Acetone	500	Soxhlet extraction	34.00 ± 43.4	22.13 ± 11.9	754.8
11	Acetone	1000	Maceration	17.21 ± 19.2	4.625 ± 7.58	79.70
12	Acetone	1000	Soxhlet extraction	34.80 ± 3.61	7.095 ± 6.40	247.1
13	Ethanol	125	Maceration	24.60 ± 24.9	6.599 ± 1.07	162.4
14	Ethanol	125	Soxhlet extraction	41.13 ± 10.6	0.259 ± 0.22	10.70
15	Ethanol	500	Maceration	7.239 ± 4.55	12.52 ± 5.21	90.49
16	Ethanol	500	Soxhlet extraction	26.47 ± 27.6	2.047 ± 2.89	54.26
17	Ethanol	1000	Maceration	14.40 ± 15.4	11.77 ± 2.96	170.0
18	Ethanol	1000	Soxhlet extraction	30.53 ± 37.2	3.298 ± 4.06	100.8

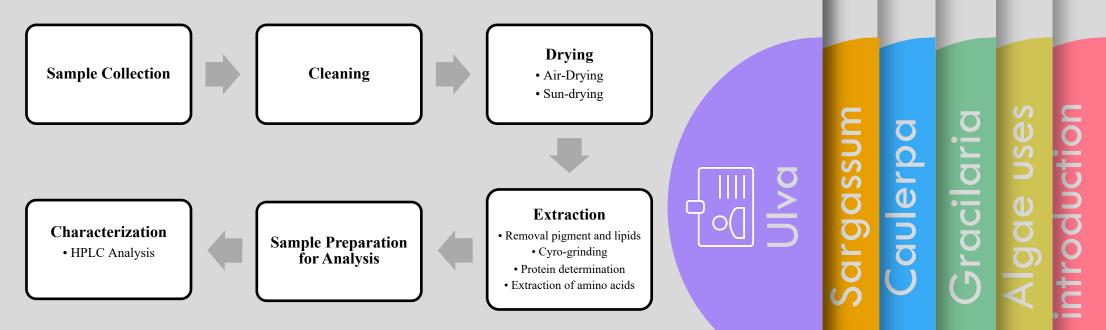

Caulerpa Gracilaria Algae uses introduction


Sargassum

|||| 0(]

Ċ

Ulva lactuca - Ulvan



Drying process	рН	Weight, g	Extraction Yield, %
Sun-dry 1	1.5	0.3533 ±0.017 ^{bcd}	11.73±0.477 ^{bc}
Sun-dry 2	2.0	0.3821 ±0.008 ^{bc}	12.5±0.260 ^{bc}
Sun-dry 3	2.5	0.2135 ±0.005 ^e	7.02±0.164 ^e
Air-dry 1	1.5	0.4102 ±0.067 ^{ab}	13.50±2.194 ^{ab}
Air-dry 2	2.0	0.4560 ±0.069ª	15.01±2.277ª
Air-dry 3	2.5	0.3035 ±0.050 ^d	10.00±1.659 ^d

Gaulerpa Gracilaria Algae uses introduction

Sargassum

O

	Average (%)					
Amino Acids	Air-D		Sun-Dr	y		
	w/w	TAAs	w/w	TAAs		
Нур	0.107 ± 0.023 ^{mo}	1.410 ^{kl}	0.107 ± 0.006 ^{mo}	1.311 ^{mn}		
Asp ^N	0.902 ± 0.144 ^a	11.889ª	0.965 ± 0.039ª	11.827ª		
Ser ^N	0.447 ± 0.076 ^{cg}	5.892 ^{de}	0.471 ± 0.014^{cg}	5.773 ^{fg}		
Glu ^ℕ	0.881 ± 0.145^{a}	11.612ª	0.975 ± 0.032ª	11.950 ^a		
Gly ^N	0.550 ± 0.096 ^{bd}	7.249 ^c	0.582 ± 0.011 ^{bd}	7.133 ^{cd}		
His ^E	0.118 ± 0.020^{mo}	1.555 ^{ki}	0.097 ± 0.005 ^{mo}	1.189 ^{mn}		
Arg ^N	0.504 ± 0.064^{bf}	6.643 ^d	0.483 ± 0.025^{cf}	5.920 ^{ef}		
Thr [∈]	0.436 ± 0.069^{ch}	5.747 ^{df}	0.453 ± 0.101 ^{ci}	5.552 ^{fi}		
Ala ^N	0.678 ± 0.100^{b}	8.936 ^b	0.745 ± 0.012^{b}	9.131 ^b		
Pro ^N	0.392 ± 0.063 ^{ck}	5.167 ^{ei}	0.438 ± 0.013^{dk}	5.368 ^{gk}		
Tyr ^N	$0.169 \pm 0.048^{\text{Im}}$	2.227 ^j	$0.221 \pm 0.013^{\text{lm}}$	2.709 ¹		
Val ^E	0.533 ± 0.078^{be}	7.025 ^c	0.576 ± 0.014^{be}	7.060 ^{ce}		
Met ^E	0.129 ± 0.057^{mn}	1.700 ^{jk}	0.150 ± 0.018^{mn}	1.838 ^{Im}		
Lys ^E	0.403 ± 0.078 ^{cj}	5.312 ^{eh}	0.441 ± 0.024 ^{cj}	5.405 ^{gj}		
Ile ^E	0.346 ± 0.050^{fl}	4.560 ^{gi}	0.378 ± 0.012^{fl}	4.633 ^{jk}		
Leu ^E	0.561 ± 0.082 ^{bc}	7.394 ^c	0.619 ± 0.020 ^{bc}	7.587 ^c		
Phe ^E	0.427 ± 0.062 ^{ci}	5.628 ^{dg}	0.458 ± 0.014^{ch}	5.613 ^{fh}		

Sargassum

Caulerpa Gracilaria Algae uses introduction

Ulva	lactuca –	Vitamin	B12
------	-----------	---------	------------

Seaweeds	Vitamin (mg per 8 g dry po <u>rtion)</u>								
a and that are	B1	B2	B3	B6	B 8	B 9	B12	С	Ε
Ascophyllum nodosum	0.216	0.058	0.000	0.001	0.001	3.648	0.131	0.654	0.029
Laminaria digitata	0.011	0.011	4.896	0.513	0.513	0.000	0.495	2.842	0.275
Undaria pinnatifida	0.403	0.936	7.198	0.259	0.015	0.528	0.345	14.779	1.392
Porphyra umbilicalis	0.077	0.274	0.761	0.119	NA	1.003	0.769	12.885	0.114
Palmaria pulmata	0.024	0.080	0.800	0.002	0.002	0.021	1.840	5.520	1.296
Ulva spp.	0.060	0.030	8.000	NA	NA	0.012	6.300	10.000	NA

Component	Value (% db)
Moisture content	9.89 ± 3.37
Ash	31.40 ± 0.62
Protein	9.24 ± 0.31
Fat	0.38 ± 0.24
Crude fiber	3.68 ± 0.16
Carbohydrate	49.09 ± 3.99

Sargassum

Ulva

) o(]

q

Sample collection, drying (Sun-, oven-, air-, freeze-drying) and preparation

Designing screening experimental design by 2-Level Factorial

Sample extraction (ultrasonic water bath, orbital shaker, boiling) and parameters

Purification of vitamin B12 crude extract

Qualitative and quantitative analysis by HPLC

Statistical analysis

Optimisation by Central Composite Design (CCD)

Sargassum Caulerpa Gracilaria

Run	Solvent:solvent ratio	рН	Solute:solvent	Conc. of vitamin B12
	(MeOH:H2O)		ratio (g/mL)	(mg/mL) *
1	75:25	3	3:60	
2	50:50	4	3:75	
3	25:75	3	3:90	
4	75:25	5	3:60	
5	25:75	5	3:60	
6	25:75	3	3:90	
7	50:50	4	3:75	
8	75:25	3	3:90	
9	50:50	4	3:75	
10	25:75	5	3:90	
11	75:25	5	3:90	
12	75:25	5	3:90	
13	25:75	3	3:60	
14	75:25	3	3:90	
15	75:25	3	3:60	
16	25:75	5	3:90	
17	75:25	5	3:60	
18	50:50	4	3:75	
19	50:50	4	3:75	
20	25:75	3	3:60	
21	25:75	5	3:60	

Gaulerpa Gracilaria Algae uses introduction

Sargassum

Ulva

Standards	Retention time (min)		
Cn-Cbl	1.9		
OH-Cbl	2.3		
Adl-Cbl	2.7		
Me-Cbl	3.1		

Oven-dried, extracted by boiling method (0.0210 mg/mL)

Insignificant (p > 0.05) 0 S

racilaria

gassum

0

aulerpa

Significant (p < 0.05)

Oven-dried, extracted by UAE (0.0236 mg/mL)

Sun-dried, extracted by orbital shaking procedure (0.0356 mg/mL)

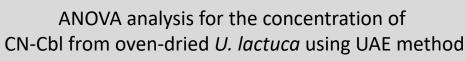
ANOVA analysis for the concentration of CN-Cbl from oven-dried *U. lactuca* using UAE method

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	0.0008	7	0.0001	76.53	< 0.0001	significant
A-Solvent:solvent ratio (MeOH:H2O)	0.0000	1	0.0000	10.53	0.0070	
В-рН	0.0001	1	0.0001	49.69	< 0.0001	
C-Solute:solvent ratio	2.448E-06	1	2.448E-06	1.69	0.2180	
AB	0.0004	1	0.0004	261.72	< 0.0001	
AC	0.0003	1	0.0003	184.21	< 0.0001	
BC	0.0000	1	0.0000	20.66	0.0007	
ABC	0.0000	1	0.0000	7.22	0.0198	
Curvature	0.0001	1	0.0001	60.40	< 0.0001	

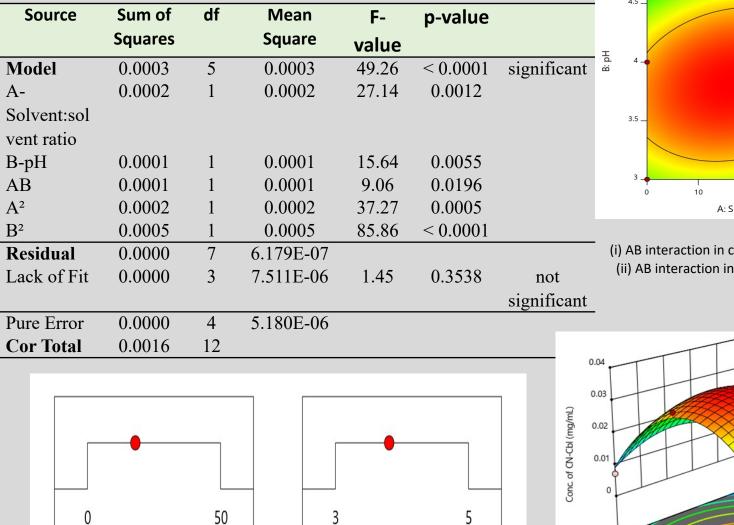
gassum

0 L

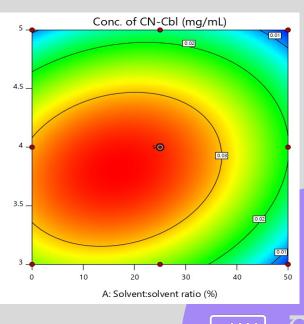
Gaulerpa Gracilaria Algae uses ntroduction


 		•	
Run	Solvent:solvent ratio (MeOH:H ₂ O)	рН	Conc. of vitamin B12 (mg/mL)
1	0:100	3	0.0250
2	50:50	3	0.0084
3	0:100	5	0.0072
4	50:50	5	0.0055
5	0:100	4	0.0323
6	50:50	4	0.0189
7	25:75	3	0.0225
8	25:75	5	0.0192
9	25:75	4	0.0357
10	25:75	4	0.0355
11	25:75	4	0.0351
12	25:75	4	0.0358
13	25:75	4	0.0305

Optimised design layout of Central composite design for UAE of ovendried sample



Ň


Gaulerpa Gracilaria Algae uses

A:Solvent:solvent ratio = 18.0125



B:pH = 3.81486

(i) AB interaction in contour plots (ii) AB interaction in 3D surface

3 0

aria acil

SUM σ 0 Ο S

Acknowledgements

- Ministry of Higher Education (MOHE) Malaysia through Fundamental Research Grant Scheme (FRGS19-129-0738)
- International Islamic University Malaysia internal Grants (P-RIGS18-028-0028)
- Collaborators: Assoc. Prof Dr Normawaty Mohd Noor, Asst. Prof Dr Nurul Iman Aminudin, Prof. Dr Muhammad Taher
- UG and PG Students: Fitriyanti, Hasna, Fatin Shazwani, Khalisah, Mohd Idham, Muhammad Hafizuddin, Siti Nur Ain Nadhirah, Nur Fitrah, Nur Syazwani.

