Antiparasitic Assessment of Nerolidol Against the Growth and Survival of Haemoflagellate Protozoa, Trypanosoma evansi in Mice

Mohd Shukri Baba¹, Zainal Abidin Abu Hassan² and Normalawati Shamsudin³

¹, Kulliyyah of Allied Health Sciences, International Islamic University, 25200 Kuantan, Pahang, Malaysia. ² Department of Parasitology, Medical Faculty, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. ³ Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

INTRODUCTION

Cell morphological changes are frequently used as indirect indicators of the effect of studied materials on targeted cells. Antiparasitic effects of active compound, nerolidol ($C_{12}H_{26}O$) extracted from cardamom seeds (*Eiettaria cardamomum*) was *in-vivo* compared with commercial drug, Berenil, on the growth and survival from this study suggest that nerolidol has a stronger anti-parasitic activity against *T. evansi* by causing the destruction of the cells.

METHODOLOGY

NEROLIDOL

RESULTS

Survival time (Day) of the mice treated with nerolidol according to regime of control, preventive, concurrent and preventive treatment.

DISCUSSIONS

- Stochastic genetic modification of VSG is still the best weapon for trypanosome survival.
- New wave of infection lead the mice susceptible to infection.
- Prophylaxis treatment in preventive regime at 0.1 mL of 0.5 mL/kg bw given on 7 days preinfection is the best among all regimes in this study.
- Morphological changes of T. evansi in nerolidol-treated mice: The undulating membrane was destroyed and the cell became crescent-shaped, before both of the posterior and anterior ends were tapered before the flagellum destroyed and disintegrated in which lead to death of the cells.

CONCLUSION

Nerolidol has a stronger anti-parasitic activity against *T. evansi* by causing the destruction of the cells. Further studies are required to elucidate the mechanism of action of nerolidol on the cell structure.

ACKNOWLEDGEMENT

International Islamic University for financial support, Universiti Kebangsaan Malaysia for technical assistance, instrumentation, parasitology and animal study supervision.