Akmal, M.H.M.a, Ahmad, F.B.b,c, Hisham, F.a, Hazmi, A.T.b

Biopolymer-based waste for biomaterials thin film in piezoelectric application

DOI: 10.1016/B978-0-323-90150-5.00010-8

a Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
b Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
c Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia

Abstract
The abundance of biopolymer-based biomass waste generated from various sectors including agriculture, aquaculture, forestry, industry and municipal waste is an opportunity to use it as the sustainable feedstock of piezoelectric biomaterials. Rather than disposing these biomass wastes into the landfill or incinerators, these wastes can be converted into value-added product by fabricating it into piezoelectric thin film. The biomass waste is predominantly composed of biomaterials, including polysaccharides and polypeptides, that are polymeric in nature and has the capacity to exhibit piezoelectric effect depending on its crystal structure. Biomaterials that exist in abundance, such as cellulose, chitin and chitosan, can be extracted from biomass waste and can potentially be reutilized as thin film for piezoelectric application. These biomaterials have been reported to possess piezoelectric coefficient of 2-30 pC/N. The reutilization of biomaterials for piezoelectric is significant, as the use of natural polymers from biomaterials will allow the fabrication of biocompatible, biodegradable and flexible thin film that can be used as electronic devices, due to the intrinsic nature of the natural polymers. This study aims to review the potential use of biomaterial thin film in various piezoelectric application, which includes as nanogenerator, biosensors, and biomedical devices. © 2021 Elsevier Inc. All rights reserved.

Author Keywords
Bionanomaterial; Cellulose; Chitin; Chitosan; Collagen; Lignocellulosic biomass; Piezoelectric; Polypeptide; Polysaccharide; Thin film

References
- Maziatmi Akmal, M.H., Ahmad, F.B.
 Bionanomaterial Thin Film For Piezoelectric Applications
- Yuan, H., Lei, T., Qin, Y., He, J.-H., Yang, R.
 Design and application of piezoelectric biomaterials
- Cunha, A.G., Gandini, A.
 Turning polysaccharides into hydrophobic materials: A critical review. Part 1
- Ahmad, F.B., Maziatmi Akmal, M.H., Amran, A., Hasni, M.H.
 Characterization of chitosan from extracted fungal biomass for piezoelectric application
- Hänninen, A., Sarlin, E., Lyyra, I., Salpavaara, T., Kellomäki, M., Tuukkanen, S.
 Nanocellulose and chitosan based films as low cost, green piezoelectric materials
- Praveen, E., Murugan, S., Jayakumar, K.
 Investigations on the existence of piezoelectric property of a bio-polymer - Chitosan and its application in vibration sensors
Ghosh, S.K., Mandal, D.
Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring

Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator

Ghosh, S.K., Mandal, D.
High-performance bio-piezoelectric nanogenerator made with fish scale

Ghosh, S.K., Mandal, D.
Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder

Karan, S.K., Maiti, S., Paria, S., Maitra, A., Si, S.K., Kim, J.K.
A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester

Ahmad, F.B., Zhang, Z., Doherty, W.O.S., O'Hara, I.M.
The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery

Philippini, R.R., Martiniano, S.E., Ingle, A.P., Franco Marcelino, P.R., Silva, G.M., Barbosa, F.G.
Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries

Ahmad, F.B., Zhang, Z., Doherty, W.O.S., O'Hara, I.M.
The prospect of microbial oil production and applications from oil palm biomass

Guerin, S., Tofail, S.A.M., Thompson, D.
Organic piezoelectric materials: Milestones and potential

Tuukkanen, S., Rajala, S.
Nanocellulose as a piezoelectric material

Csoka, L., Hoeger, I.C., Rojas, O.J., Peszlen, I., Pawlak, J.J., Peralta, P.N.
Piezoelectric effect of cellulose nanocrystals thin films

Cunha, A.G., Gandini, A.
Turning polysaccharides into hydrophobic materials: A critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates

Kim, K., Ha, M., Choi, B., Joo, S.H., Kang, H.S., Park, J.H.
Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers
Jacob, J., More, N., Kalia, K., Kapusetti, G.
Piezoelectric smart biomaterials for bone and cartilage tissue engineering

Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B.,
Fernandes, F.A.N.
Extraction of lipids from microalgae by ultrasound application: Prospection of the
optimal extraction method

Rajala, S., Siponkoski, T., Sarlin, E., Mettänen, M., Vuoriluoto, M., Pammo, A.
Cellulose Nanofibril Film as a Piezoelectric Sensor Material

Rajala, S., Vuoriluoto, M., Rojas, O.J., Franssila, S., Tuukkanen, S.
Piezoelectric sensitivity measurements of cellulose nanofibril sensors
(2015) IMEKO XXI World Congress, Proceedings,
August 30-September 4, 2015, Prague, Czech Republic; 2015

Bio-waste onion skin as an innovative nature-driven piezoelectric material with high
energy conversion efficiency

Bairagi, S., Ghosh, S., Ali, S.W.
A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator:
Electricity generation from pomelo fruit membrane

Ghosh, S.K., Mandal, D.
Sustainable Energy Generation from Piezoelectric Biomaterial for Noninvasive
Physiological Signal Monitoring

Kim, D., Han, S.A., Kim, J.H., Lee, J.H., Kim, S.W., Lee, S.W.
Biomolecular Piezoelectric Materials: From Amino Acids to Living Tissues

Yuan, H., Han, P., Tao, K., Liu, S., Gazit, E., Yang, R.
Piezoelectric Peptide and Metabolite Materials

Shin, D.-M., Hong, S.W., Hwang, Y.-H.
Recent advances in organic piezoelectric biomaterials for energy and biomedical
applications

Ueberschlag, P.
PVDF piezoelectric polymer

Han, G., Ryu, J., Yoon, W.H., Choi, J.J., Hahn, B.D., Park, D.S.
Effect of film thickness on the piezoelectric properties of lead zirconate titanate
thick films fabricated by aerosol deposition

Lian, L., Sottos, N.R.
Effects of thickness on the piezoelectric and dielectric properties of lead zirconate
titanate thin films
Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D.V., Damjanovic, D.
Domain wall contributions to the properties of piezoelectric thin films

Selvarajan, S., Alluri, N.R., Chandrasekhar, A., Kim, S.-J.
BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application

Fett, T., Munz, D., Thun, G.
Tensile and bending strength of piezoelectric ceramics

Anton, S.R., Erturk, A., Inman, D.J.
Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications

Mohammadi, B., Yousefi, A.A., Bellah, S.M.
Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films

Sencadas, V., Branciforti, M.C., Gregorio, R., Lancers-Méndez, S.
Molecular Orientation and Degree of Crystallinity of Piezoelectric Poly(Vinylidene Fluoride) Films Exclusively in the β Phase

Fukada, E., Yasuda, I.
Piezoelectric effects in collagen

Chorsi, M.T., Curry, E.J., Chorsi, H.T., Das, R., Baroody, J., Purohit, P.K.
Piezoelectric Biomaterials for Sensors and Actuators

Murayama, N., Nakamura, K., Obara, H., Segawa, M.
The strong piezoelectricity in polyvinylidene fluoroide (PVDF)

Mason, W.P.
Piezoelectricity, its history and applications

Beeby, S.P., Tudor, M.J., White, N.
Energy harvesting vibration sources for microsystems applications

Andosca, R., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C.
Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading

Kim, S.-G., Priya, S., Kanno, I.
Piezoelectric MEMS for energy harvesting

Lin, Y.-F., Song, J., Ding, Y., Lu, S.-Y., Wang, Z.L.
Piezoelectric nanogenerator using CdS nanowires
Lu, M.-P., Song, J., Lu, M.-Y., Chen, M.-T., Gao, Y., Chen, L.-J.
Piezoelectric nanogenerator using p-type ZnO nanowire arrays

Pin, S., Piccinelli, F., Upendra Kumar, K., Enzo, S., Ghigna, P., Cannas, C.
Structural investigation and luminescence of nanocrystalline lanthanide doped Na0.5K0.5NbO3
Complete

Jung, J.H., Lee, M., Hong, J.-I., Ding, Y., Chen, C.-Y., Chou, L.-J.
Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator

Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator

Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film

Uchino, K.
The development of piezoelectric materials and the new perspective

Kang, M.-G., Jung, W.-S., Kang, C.-Y., Yoon, S.-J.
Recent progress on PZT based piezoelectric energy harvesting technologies

A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit

Kumari, P., Rai, R., Sharma, S., Shandilya, M., Tiwari, A.
State-of-the-art of lead free ferroelectrics: A critical review

Chandrasekaran, S., Bowen, C., Roscow, J., Zhang, Y., Dang, D.K., Kim, E.J.
Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices

Baklagina, Y., Klechkovskaya, V., Kononova, S., Petrova, V., Poshina, D., Orekhov, A.
Polymorphic modifications of chitosan

Li, T., Zeng, K.
Nanoscale piezoelectric and ferroelectric behaviors of seashell by piezoresponse force microscopy

Ansari, M., Karami, M.A.
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers
Pohanka, M.
Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications

Ali, F., Raza, W., Li, X., Gul, H., Kim, K.-H.
Piezoelectric Energy Harvesters for Biomedical Applications

Xu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L.
Recent developments for flexible pressure sensors: A review

A Geometrical Study on the Roof Tile-Shaped Modes in AlN-Based Piezoelectric Microcantilevers as Viscosity-Density Sensors

Feng, Y., Li, M., Gao, Z., Zhang, X., Zeng, X., Sun, Y.
Development of Betaine-Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5-Hydroxymethylfurfural

Wilkie-Chancellier, N., Martinez, L., Serfaty, S., Griesmar, P.
Lamb wave sensor for viscous fluids characterization

Nazemi, H., Joseph, A., Park, J., Emadi, A.
Advanced micro-and nano-gas sensor technology: A review

Sun, C., Shi, Q., Yazici, M., Lee, C., Liu, Y.
Development of a Highly Sensitive Humidity Sensor Based on a Piezoelectric Micromachined Ultrasonic Transducer Array Functionalized with Graphene Oxide Thin Film

Qi, P., Zhang, T., Shao, J., Yang, B., Fei, T., Wang, R.
A QCM humidity sensor constructed by graphene quantum dots and chitosan composites

Eggly, G.M., Blackhall, M., de Araújo Gomes, A., Santos, R., de Araújo, M.C.U., Pistonesi, M.F.
Emitter/receiver piezoelectric films coupled to flow-batch analyzer for acoustic determination of free glycerol in biodiesel without chemicals/external pretreatment

Prickril, B., Rasooly, A.P.
(2017) *Biosensors Biodetect.*, Springer

Mahato, K., Maurya, P.K., Chandra, P.
Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics

Pohanka, M.
The Piezoelectric Biosensors: Principles and Applications
Skládal, P.
Piezoelectric biosensors

Pohanka, M.
Piezoelectric biosensor for the determination of Tumor Necrosis Factor Alpha

Aberl, F., Wolf, H., Kößlinger, C., Drost, S., Woias, P., Koch, S.
HIV serology using piezoelectric immunosensors

König, B., Grätzel, M.
A piezoelectric immunosensor for hepatitis viruses

Muramatsu, H., Kajiwara, K., Tamiya, E., Karube, I.
Piezoelectric immuno sensor for the detection of candida albicans microbes

Ben-Dov, I., Willner, I., Zisman, E.
Piezoelectric Immunosensors for Urine Specimens of Chlamydia trachomatis Employing Quartz Crystal Microbalance Microgravimetric Analyses

Su, X.-L., Li, Y.
A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7

Prusak-Sochaczewski, E., Luong, J.H.T., Guilbault, G.G.
Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium

Karaseva, N.A., Ermolaeva, T.N.
A piezoelectric immunosensor for chloramphenicol detection in food

Lin, H.-C., Tsai, W.-C.
Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B

Fung, Y.S., Wong, Y.Y.
Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor To Detect Salmonella in Aqueous Solution

Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1

March, C., Manclús, J.J., Jiménez, Y., Arnau, A., Montoya, A.
A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices

Halámk, J., Hepel, M., Skládal, P.
Investigation of highly sensitive piezoelectric immunosensors for 2, 4-...
dichlorophenoxyacetic acid

- Steegborn, C., Skládal, P.
Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution

- Haring, A.P., Cesewski, E., Johnson, B.N.
Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA

- Jin, Y., Xie, Y., Wu, K., Huang, Y., Wang, F., Zhao, R.
Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor

- Pohanka, M.
Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications

Selective and sensitive detection of fruit aroma using a molecularly imprinted polymer based piezoelectric quartz sensor
(2018) 16th International Symposium on Olfaction and Electronic Nose, Dijon,

- Ebarvia, B.S., Ubando, I.E.
Molecularly Imprinted Polymer Sensing Layer for Tetracycline Chemical Sensor Based on Piezoelectric Quartz Crystal Transducer

- Karaseva, N., Ermolaeva, T., Mizaikoff, B.
Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics

- Ebarvia, B.S., Ubando, I.E., Sevilla, F.B.
Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer

- Pan, M., Li, R., Xu, L., Yang, J., Cui, X., Wang, S.
Reproducible molecularly imprinted piezoelectric sensor for accurate and sensitive detection of ractopamine in swine and feed products

- Karaseva, N.A., Pluhar, B., Beliaeva, E.A., Ermolaeva, T.N., Mizaikoff, B.
Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors

- Prasad, B.B., Jauhari, D.
A dual-template biomimetic molecularly imprinted dendrimer-based piezoelectric sensor for ultratrace analysis of organochlorine pesticides

https://www.scopus.com/citation/print.uri?origin=recordpage&sid=&src=s&stateKey=OFD_1616907564&eid=2-s2.0-85128020047&sort=&clicked... 8/11
- Zhao, C., Jia, G., Lu, W., Gong, Q.
 A piezoelectric magnetic molecularly imprinted surface sensor for the detection of Sudan I

- Xin, Y., Sun, H., Tian, H., Guo, C., Li, X., Wang, S.
 The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review

- Pan, X., Wang, Z., Cao, Z., Zhang, S., He, Y., Zhang, Y.
 A self-powered vibration sensor based on electrospun poly (vinylidene fluoride) nanofibres with enhanced piezoelectric response

- Shabani Varaki, E., Breen, P.P., Gargiulo, G.D.

- Tseng, H.-J., Tian, W.-C., Wu, W.-J.
 Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

- McNeill, M., Braun, B., McCormack, P.
 Piezoelectric sensor determination of arterial pulse wave velocity

 On the piezoelectricity of collagen-chitosan films

- Ribeiro, C., Sencadas, V., Correia, D.M., Lanceros-Méndez, S.
 Piezoelectric polymers as biomaterials for tissue engineering applications

 Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing

- Rajabi, A.H., Jaffe, M., Arinzeh, T.L.
 Piezoelectric materials for tissue regeneration: A review

- Bhang, S.H., Jang, W.S., Han, J., Yoon, J.K., La, W.G., Lee, E.
 Zinc oxide nanorod-based piezoelectric dermal patch for wound healing

- Atul, S.T., Babu, M.L.
 Characterization of valveless micropump for drug delivery by using piezoelectric effect

- Tandon, B., Magaz, A., Balint, R., Blaker, J.J., Cartmell, S.H.
 Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration
Gidde, R.R., Pawar, P.M., Dhamgaye, V.P.
Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application

Nafea, M., Nawabjan, A., Ali, M.S.M.
A wirelessly-controlled piezoelectric microvalve for regulated drug delivery

Yang, K.-S., Chao, T.-F., Chen, I.Y., Wang, C.-C., Shyu, J.-C.
A comparative study of nozzle/diffuser micropumps with novel valves

Dagdeviren, C., Shi, Y., Joe, P., Ghaffari, R., Balooch, G., Usgaonkar, K.
Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

Ahmad, F.B.
Microbial oil production from sugarcane bagasse hydrolysates by oleaginous yeast and filamentous fungi
(2016) Microbial Oil Production from Sugarcane Bagasse Hydrolysates by Oleaginous Yeast and Filamentous Fungi, pp. 251-259.

Zamli, M.I.
Extraction of microbial chitosan for piezoelectric application

Hisham, F.
Facile extraction of chitin and chitosan from shrimp shell

Abdullah, N.A.
Preliminary study on immobilization of plant esterase on functionalized multi-walled carbon nanotubes (MWCNTs) for biosensor application

Hekiem, N.L.L.
Effect of chitosan dissolved in different acetic acid concentration towards VOC sensing performance of quartz crystal microbalance overlay with chitosan

Hekiem, N.L.L.
Advanced vapour sensing materials: Existing and latent to acoustic wave sensors for VOCs detection as the potential exhaled breath biomarkers for lung cancer
(2021) Sensors Actuators A Phys.,

Publisher: Elsevier

ISBN: 9780323901505
Language of Original Document: English
Abbreviated Source Title: Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 2: Chemical Processes
Document Type: Book Chapter
Publication Stage: Final
Source: Scopus