Documents

Zaini, S.A., Abu Hanifah, M.S., Yusoff, S.H., Nanda, N.N., Badawi, A.S.

DOI: 10.11591/ijeecs.v23.i1.pp132-139

Department of Electrical and Computer Engineering, International Islamic University, Malaysia

Abstract
As the population grows, people will consume more natural resources. This issue will lead to a low petrol supply for all land transportation, especially supplies for car consumption. Therefore, the electric vehicle (EV) has been introduced to overcome this issue. Currently, wired charging of EVs has been implemented in most of the developed country, including Malaysia. However, some drawbacks have been found from this technology. Therefore, wireless charging comes into the picture to solve this issue. Charging pad on the road and at the car are required for both wired and wireless charging. Various designs of charging pad are available. However, this paper will only focus on the circular design. There is many software that can be used to design the coil pad. Each software has a different procedure and steps to design the coil pad. In this paper, JMAG Designer software will be used to design the circular coil pad. Then, three coil pair were simulated using JMAG Designer to investigate the magnetic flux density between primary and secondary coil when varying the misalignment of 0 cm, 4 cm and 8 cm. From the simulation, there is no specific trend in the relationship between magnetic flux density and misalignment. © 2021 Institute of Advanced Engineering and Science. All rights reserved.

Author Keywords
Circular coil pad; Electric vehicle (EV); JMAG Designer; Magnetic flux density; Misalignment; Wireless charging

References

 Testing a prototype inductive power coupling for an electric highway system (1979) 29th IEEE Vehicular Technology Conference, 29, pp. 48-56.

- (2016) Low Carbon Mobility,
 Malaysian Green Technology Corporation, [Online]. Available

- (2016) Global Plug-In Light Vehicle Sales Increased By About 80% IN 2015,

- Gear, J. G.
 (2014) Ge uses ai to charge electric cars without running up the bill,
 [Online]. Available

- Mackenzie, A.
 (2013) Bosch and Evatran partner to bring EV wireless charging system to the US,
 [Online]. Available

- Nanda, N. N., Yusoff, S. H., Toha, S. F., Hasbullah, N. F., Roszaidie, N. A. S.
- Hui, S. Y. R., Zhong, W., Lee, C. K.
 A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer

- Chen, W., Liang, J., Yang, Z., Li, G.
 A review of lithium-ion battery for electric vehicle applications and beyond

 Analysis and Parameters Optimization of A Contactless IPT System for EV Charger

- Jiang, H., Brazis, P., Tabaddor, M., Bablo, J.
 Safety Considerations of Wireless Charger for Electric Vehicles - A Review Paper

- Liu, C., Jiang, C., Qiu, C.
 Overview of coil designs for wireless charging of electric vehicle

- Kim, M., Byeon, J., Lee, B. K., Lee, J.
 Performance analysis of magnetic power pads for inductive power transfer systems with ferrite structure variation

- Boys, J. T., Covic, G. A.
 The Inductive Power Transfer Story at the University of Auckland
 Secondquarter

- Corti, F., Grasso, F., Paolucci, L., Pugi, L., Luchetti, L.
 Circular Coil for EV Wireless Charging Design and Optimization Considering Ferrite Saturation

- Campi, T., Cruciani, S., Rodríguez, G., Feliziani, M.
 Coil design of a wireless power transfer charging system for a drone

- Mosammam, B. M., Rasekh, N., Mirsalim, M., Moghani, J. S.
 Comparative Analysis of the Conventional Magnetic Structure Pads for the Wireless Power Transfer Applications

- Zaini, S. A., Yusoff, S. H., Abdullah, A. A., Khan, S., Abd Rahman, F., Nanda, N. N.
 Investigation of Magnetic Properties for Different Coil Sizes of Dynamic Wireless Charging Pads for Electric Vehicle (EV)
- Zaheer, A., Hao, H., Covic, G. A., Kacprzak, D.
 Investigation of Multiple Decoupled Coil Primary Pad Topologies in Lumped IPT Systems for Interoperable Electric Vehicle Charging

- Deshmukh, R. A., Talange, D. B.
 Design of 1kW inductive power transfer system for electric vehicle

- Southern, G.
 Electric Vehicles Wireless Power Transfer State-of-The-Art

- Mosammam, B. M., Rasekh, N., Mirsalim, M., Khorsandi, A.
 Electromagnetic Analysis for DD Pad Magnetic structure of a Wireless Power Transfer (WPT) for Electrical Vehicles

- Roslan, M. A. A., Nanda, N. N., Yusoff, S. H.
 Series-Series and Series-Parallel Compensation Topologies for Dynamic Wireless Charging

- Aditya, K., Williamson, S. S.
 Comparative study of series-series and series-parallel topology for long track EV charging application

- Fang, C., Song, J., Lin, L., Wang, Y.
 Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application

- Chao, Y., Shieh, J.
 Series-parallel loosely coupled battery charger with primary-side control

- Aditya, K., Williamson, S. S.
 Comparative study of Series-Series and Series-Parallel compensation topologies for electric vehicle charging

- Aditya, K.
 (2016) Design and Implementation of An Inductive Power Transfer System for Wireless Charging of Future Electric Transportation,
 Doctoral Dissertation, Department Electrical and Computer Engineering, University of Ontario Institute of Technology, Canada
Zaini, S. A.
M.S. Thesis, International Islamic University Malaysia, Malaysia

Correspondence Address
Abu Hanifah M.S.; Department of Electrical and Computer Engineering, Jalan Gombak, Malaysia; email: nnazieha.nanda@gmail.com

Publisher: Institute of Advanced Engineering and Science

ISSN: 25024752

Language of Original Document: English

2-s2.0-85109446812

Document Type: Article

Publication Stage: Final

Source: Scopus