Caryologia Open Access
Volume 71, Issue 1, 2 January 2018, Pages 35-44

Determination of the chromosome number and genome size of Garcinia mangostana L. via cytogenetics, flow cytometry and k-mer analyses (Article) (Open Access)

Midin, M.R.a,b, Nordin, M.S.c, Madon, M.c, Saleh, M.N.d, Goh, H.-H.e, Mohd Noor, N.e
aDepartment of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
bDepartment of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
cAdvanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), Kajang, Malaysia

Abstract

Mangosteen (Garcinia mangostana L.) is one of the most popular tropical fruit of South-East Asia. It has considerable economic potential for local and export markets. This paper describes a research work to determine the number of chromosomes and genome size of G. mangostana through chromosome counting, flow cytometry and k-mer analyses. Chromosome count analysis revealed that the chromosome number of G. mangostana varied from 74 to 110. The high number observed could be due to the occurrence of mutation and aneuploidy in G. mangostana. Using flow cytometry with Gyicine max cv. Polanka (2C = 2.5 pg) used as standard, G. mangostana genome size was found to be 2C = 6.00 ± 0.17 pg. Meanwhile, a genome survey of G. mangostana was performed using Illumina HiSeq 2000 DNA sequencing; k-mer analysis revealed that the genome size of G. mangostana was approximately 5.92 Gbp, or approximately 6.05 pg (1 pg DNA = 0.9780 x 109 bp). Based on the flow cytometry and genome survey, the study concludes that the genome size of G. mangostana is between 6.00 and 6.05 pg. © 2017 Dipartimento di Biologia, Università di Firenze.

SciVal Topic Prominence

Topic: Hydroxycitric Acid | Garcinia Gummi-Guta | Xanthone Derivative
Prominence percentile: 71.983

Chemistry database information

Substances

Inform me when this document is cited in Scopus:
Author keywords
- Chromosome count
- Flow cytometry
- G. mangostana
- genome
- size
- k-mer analysis

ISSN: 00087114
CODEN: CARYA
Source Type: Journal
Original language: English

DOI: 10.1080/00087114.2017.1403762
Document Type: Article
Publisher: Taylor and Francis Ltd.

References (82)

1. Abdullah, N.A.P., Richards, A.J., Wolff, K.
Molecular evidence in identifying parents of Garcinia mangostana L.

2. Abu Bakar, S., Sampathiraj, S., Loke, K.-K., Goh, H.-H., Mohd Noor, N.
DNA-seq analysis of Garcinia mangostana
(Open Access)
http://www.journals.elsevier.com/genomics-data/
doi:10.1016/j.gdata.2015.11.018

View at Publisher

3. Albach, D.C., Greilhuber, J.
Genome size variation and evolution in Veronica
(Open Access)
doi:10.1093/aob/mch219

View at Publisher

4. Desai, J.A.N., Deodhar, M.
A comparative study of karyomorphology among three populations of Garcinia indica (clusiaceae)
(Open Access)

View at Publisher

5. Anumuganathan, K., Earle, E.D.
Estimation of nuclear DNA content of plants by flow cytometry
doi:10.1007/BF02672073

View at Publisher

Related documents
The application of flow cytometry for estimating genome size and ploidy level in plants
Pellicer, J., Leitch, I.J.
(2014) Methods in Molecular Biology

Comparison of four nuclear isolation buffers for plant DNA flow cytometry
Loureiro, J., Rodriguez, E., Doležel, J.

Isolation of plant nuclei for estimation of nuclear DNA content: Overview and best practices
Loureiro, J., Kron, P., Temsch, E.M.
(2021) Cytometry Part A

View all related documents based on references

Find more related documents in Scopus based on:
Authors > Keywords >
Bakry, F., Shepherd, K.
Chromosome count on banana root tip squashes (Open Access)
View at Publisher

Bennett, M.D., Bhandol, P., Leitch, I.J.
Nuclear DNA amounts in angiosperms and their modern uses - 807 New estimates (Open Access)
doi: 10.1093/aob/86.4.859
View at Publisher

Bennett, M.D., Leitch, I.J.
Plant genome size research: A field in focus (Open Access)
View at Publisher

Bennett, M.D., Leitch, I.J.
Nuclear DNA amounts in angiosperms: Targets, trends and tomorrow (Open Access)
View at Publisher

Bennett, M.D., Price, H.J., Johnston, J.S.
Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: Implications for genome size variation and flow cytometry (Open Access)
View at Publisher

Bolger, A.M., Lohse, M., Usadel, B.
Trimmomatic: A flexible trimmer for Illumina sequence data (Open Access)
doi: 10.1093/bioinformatics/btu170
View at Publisher

Cardoso, D.C., Carvalho, C.R., Cristiano, M.P., Soares, F.A.F., Tavares, M.G.
Estimation of nuclear genome size of the genus Mycetophylax Emery, 1913: Evidence of no whole-genome duplication in Neoattini
View at Publisher

Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) (Open Access)

http://www.pnas.org/content/109/4/1176.full.pdf+html
doi: 10.1073/pnas.1112041109

View at Publisher

14 Weiss-Schneeweiss, H., Greilhuber, J., Schneeweiss, G.M.

Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera (Open Access)

http://www.amjbot.org/cgi/reprint/93/1/148.pdf
doi: 10.3732/ajb.93.1.148

View at Publisher

15 Comai, L.

The advantages and disadvantages of being polyploid

doi: 10.1038/nrg1711

View at Publisher

16 De Storme, N., Mason, A.

Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance (Open Access)

View at Publisher

17 Doležel, J., Bartoš, J.

Plant DNA flow cytometry and estimation of nuclear genome size (Open Access)

doi: 10.1093/aob/mci005

View at Publisher

18 Doležel, J., Binarová, P., Lcretti, S.

Analysis of Nuclear DNA content in plant cells by Flow cytometry

doi: 10.1007/BF02907241

View at Publisher

19 Doležel, J., Doleželová, M., Novák, F.J.

Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana)

doi: 10.1007/BF02920930

View at Publisher
20. Doležel, J., Göhde, W.
Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry (Open Access)
doi: 10.1002/cyto.990190203
View at Publisher

21. Doležel, J., Greilhuber, J.
Nuclear genome size: Are we getting closer?
http://www3.interscience.wiley.com/cgi-bin/fulltext/123453452/PDFSTART
doi: 10.1002/cyto.a.20915
View at Publisher

22. Doležel, J., Greilhuber, J., Suda, J.
Estimation of nuclear DNA content in plants using flow cytometry
doi: 10.1038/nprot.2007.310
View at Publisher

23. Doležel, J., Sgorbati, S., Lucretti, S.
Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants
View at Publisher

Rapid flow cytometric analysis of the cell cycle in intact plant tissues
doi: 10.1126/science.220.4601.1049
View at Publisher

Nuclear DNA Content Measurement
ISBN: 978-3-52731487-4
doi: 10.1002/9783527610921.ch4
View at Publisher

26. Ha, C.O.
(1978) Embryological and cytological aspects of the reproductive biology of some understorey rainforest trees
Dissertation, Kuala Lumpur: University of Malaya
HA, C.O., SANDS, V.E., SOEPADMO, E., JONG, K.
Reproductive patterns of selected understory trees in the Malaysian rain forest: the apomictic species
View at Publisher

Halfmann, R.A., Stelly, D.M., Young, D.H.
Towards improved cell cycle synchronization and chromosome preparation methods in cotton
View at Publisher

Huettel, B., Kreil, D.P., Matzke, M., Matzke, A.J.M.
Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana (Open Access)
doi: 10.1371/journal.pgen.1000226
View at Publisher

Jedrzejczyk, I., Slwinska, E.
Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 Rosaceae Woody species containing DNA-staining inhibitors

Jones, R.N., Vegas, W., Houben, A.
A century of B chromosomes in plants: So what? (Open Access)
doi: 10.1093/aob/mcm167
View at Publisher

Kaczmarek, A., Naganowska, B., Wolko, B.
Karyotyping of the narrow-leafed lupin (Lupinus angustifolius L.) by using FISH, PRINS and computer measurements of chromosomes
doi: 10.1007/BF03195657
View at Publisher

Kołtunow, A.M.
Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules (Open Access)
doi: 10.1105/tpc.5.10.1425
View at Publisher
KRISHNASAMY, N., RAMAN, V.S.
A note on the chromosome numbers of some economic plants of India.
View at Publisher

Kron, P., Suda, J., Husband, B.C.
Applications of flow cytometry to evolutionary and population biology
doi: 10.1146/annurev.ecolsys.38.091206.095504
View at Publisher

Linnaeus, C.
(1753) Species plantarum. Cited 3430 times.
Stockholm: Impensis Laurentii Salvii

Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects
1308.2012

Loureiro, J., Rodriguez, E., Doležel, J., Santos, C.
Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content (Open Access)
doi: 10.1093/aob/mcl140
View at Publisher

Lucia, G., Ronchi, V.N., Geri, C., Castiglione, M.R., Turrini, A.
Cytogenetic and histological approach for early detection of “mantled” somaclonal variants of oil palm regenerated by somatic embryogenesis: First results on the characterization of regeneration system
doi: 10.1080/000807114.2002.10589787
View at Publisher

Madon, M.
(2000) Cytogenetic mapping of oil palm chromosomes
Dissertation, Bangi: Universiti Kebangsaan Malaysia

Madon, M., Phoon, L.Q., Clyde, M.M., Mohd, D.A.
Application of flow cytometry for estimation of nuclear dna content in elaeis
Malón, R., Rodríguez-Oubiña, J., González, M.L.
In vitro propagation of the endangered plant Centaurea ullaiae: Assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis

View at Publisher

Marais, G., Kingsford, C.
A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
(Open Access)

View at Publisher

Matra, D.D., Poerwanto, R., Santosa, E., Sobir, Higashio, H., Anzai, H., Inoue, E.
Analysis of Allelic Diversity and Genetic Relationships Among Cultivated Mangosteen (Garcinia mangostana L.) in Java, Indonesia Using Microsatellite Markers and Morphological Characters

doi: 10.1007/s12042-016-9161-8
View at Publisher

Matra, D.D., Poerwanto, R., Sobir, Higashio, H., Inoue, E.
Determination of nuclear DNA content on mangosteen (Garcinia mangostana L.) by flow cytometry
At Brisbane, Australia

Murugan, M., Madon, M., Goh, H.-H., Normah, M.N.
Cytogenetic characterization and bioinformatics analysis of mangosteen (Garcinia mangostana L.) genome
(2014) Abstracts of the Plant Genomics Congress Asia
Feb 24-25, Shangri La Hotel, Kuala Lumpur, Malaysia

Nakasone, H.Y., Paull, R.E.
Mangosteen

Noirot, M., Barre, P., Duperray, C., Louarn, J., Hamon, S.
Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: Consequences on genome size evaluation in coffee tree
(Open Access)

View at Publisher
49. Noor, N.M., Azat, W.M., Hussin, K., Rohani, E.R.
 Seed characteristics and germination properties of four Garcinia (Clusiaceae) fruit species
 (Open Access)
 http://www.eds Sciences.org/journal/index.cfm?etsname=fruits
 doi: 10.1051/fruits/2016008
 View at Publisher

50. Normah, M.N., Nor-Azza, A.B., Aliudin, R.
 Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen
 doi: 10.1007/BF00039958
 View at Publisher

51. Normah, M.N., Ramiya, S.D., Gintangga, M.
 Desiccation sensitivity of recalcitrant seeds-a study on tropical fruit species
 http://journals.cambridge.org/SSR
 doi: 10.1017/s0960258500003512
 View at Publisher

52. Normah, M.N., Rosnah, H., Noor Azza, A.B.
 Multiple shoots and callus formation from seeds of mangosteen (Garcinia mangostana L.) cultured In Vitro

53. Osman, M., Milan, A.R.
 Southampton, UK: Southampton Centre for Underutilised Crops, University of Southampton

54. Otto, F.
 Preparation and staining cells for high resolution DNA analysis
 Radbruch A., (ed), Berlin Verlag, Springer, In; editor. p

55. Pedraza-Chaverri, J., Cárdenas-Rodríguez, N., Orozco-Ibarra, M., Pérez-Rojas, J.M.
 Medicinal properties of mangosteen (Garcinia mangostana)
 www.elsevier.com/locate/foodchemtox
 doi: 10.1016/j.fct.2008.07.024
 View at Publisher
Pfoser, M., Heberle-Bors, E., Amon, A., Leley, T.
Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat–rye addition lines
doi: 10.1002/cyto.990210412

View at Publisher

Perry, C.M.B., Schrader, O.
Karyotype analysis of Placea amoena Phil. (Amaryllidaceae) by double fluorescence in situ hybridization

View at Publisher

Prado, M.J., Rodriguez, E., Rey, L., González, M.V., Santos, C., Rey, M.
Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers
doi: 10.1007/s11240-010-9753-1

View at Publisher

Price, H.J., Hodnett, G., Johnston, J.S.
Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence
http://aob.oxfordjournals.org/
doi: 10.1093/aob/86.5.929

View at Publisher

Quen, P.L.
(2009) Integration of the genetic linkage and cytogenetic maps of oil palm (Elaeisguineensis Jacq.) Dissertation, Bangi: Universiti Kebangsaan Malaysia

Ramage, C.M., Sando, L., Peace, C.P., Carroll, B.J., Drew, R.A.
Genetic diversity revealed in the apomictic fruit species Garcinia mangostana L. (mangosteen)
doi: 10.1023/B:EUPH.0000019456.06040.eb

View at Publisher

Ramsey, J., Schemske, D.W.
Neopolyploidy in flowering plants (Open Access)
doi: 10.1146/annurev.ecolsys.33.010802.150437

View at Publisher
Ray, P.K.
Mangosteen
Ray P.K., (ed), New Delhi, India: Narosa Publishing House., Inc.; editor. p

Richards, A.J.
Agamospermy
London: George Allen & Unwin., Inc: p

RICHARDS, A.J.
Studies in Garcinia, dioecious tropical forest trees: the origin of the mangosteen (G. mangostana L.)
View at Publisher

Robson, N.K.B., Adams, P.
Chromosome numbers in Hypericum and related genera
View at Publisher

Sarasmiyarti, A.
(2008) Analisis sitogenetika tanaman manggis (Garcinia mangostana L.) Jogorogo
Dissertation, Surakarta: Universitas Sebelas Maret

Schwarzacher, T., Ambros, P., Schweizer, D.
Application of Giemsa banding to orchid karyotype analysis
doi: 10.1007/BF00986805
View at Publisher

Schwarzacher, T.
Preparation and fluorescent analysis of plant metaphase chromosomes
http://www.springer.com/series/7651
doi: 10.1007/978-1-4939-3142-2_7
View at Publisher

Sobir, Poerwanto, R., Santosa, E., Sinaga, S., Mansyah, E.
Genetic variability in apomictic mangosteen (Garcinia mangostana) and its close relatives (Garcinia spp.) based on ISSR markers
71 Suda, J., Leitch, I.J.
The quest for suitable reference standards in genome size research (Open Access)

do: 10.1002/cyta.a.20907

View at Publisher

72 Swedlund, B., Vasil, I.K.
Cytogenetic characterization of embryogenic callus and regenerated plants of
Pennisetum americanum (L.) K. Schum

doi: 10.1007/BF00251107

View at Publisher

73 Thombre, M.V.
Studies in Garcinia indica Choisy

74 Tixier, P.
Donnees cytologiques sur quelques Guttiferales du Viet-Nam

75 Tixier, P.
Donnees cytologiques sur quelques Guttiferales recoitess au Laos

76 Ulrich, I., Fritz, B., Ulrich, W.
Application of DNA fluorochromes for flow cytometric DNA analysis of plant
protoplasts

do: 10.1016/0168-9452(88)90171-9

View at Publisher

77 Vrána, J., Cápá, P., Bednářová, M., Doležel, J.
Flow cytometry in plant research: A success story

http://www.springer.com/series/7089

do: 10.1007/978-3-642-41787-0_13

View at Publisher

78 Verheij, E.W.M.
Garcinia mangostana L.
Verheij E.W.M., (ed), Wageningen: PUDOC, 1n, editor. p
Mangosteen (Garcinia mangostana L.)—A potential crop for tropical Northern Australia

Utilization of some Garcinia species in Thailand
http://www.actahort.org/members/showpdf?session=1287
ISBN: 978-906605885-9

View at Publisher

© Copyright 2018 Elsevier B.V., All rights reserved.