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Abstract

Micro dry wire electrical discharge machining (WDWEDM) is an environmental-friendly machining process where gas is used as
the dielectric fluid instead of liquid. In this process, certain modifications of wire electrical discharge machining (WEDM) are
required during the machining operation for stable machining. In uDWEDM, the process is considered stable if the machining is
continuous without any interruption due to wire breakage or wire lag. However, in the present state of the arts, stable and smooth
machining process using tDWEDM remains a critical issue. Hence, the objectives of this research are to establish a stable
uDWEDM process using two different experimental approaches: one-factor-at-a-time (OFAT) and design of experiment (DOE)
method. The investigation was performed on a stainless steel (SS304) with a tungsten wire as the electrode using integrated multi-
process machine tool, DT 110 (Mikrotools Inc., Singapore). Types of dielectric fluid, dielectric fluid pressure, polarity, threshold
voltage, wire tension, wire feed rate, wire speed, gap voltage, and capacitance were the controlled parameters. The machining
length of the microchannels was measured using scanning electron microscope (SEM) (JEOL JSM-5600, Japan). Analysis based
on these two experimental approaches shows that stable tDWEDM process is achievable when the types of dielectric fluid,
dielectric fluid pressure, polarity, threshold voltage, wire tension, wire feed rate, and wire speed remain as the fixed parameters
while the capacitance and gap voltage remain as the controlled parameters.
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1 Introduction

Electrical discharge machining (EDM) process has the ability
to fabricate high-precision products for communication, aero-
space, and automotive industries [1-6]. It is a thermal machin-
ing process where the machined area of the workpiece is re-
moved by the thermal energy created by the electrical spark
[4, 7, 8]. The electrical sparking process is a repetitive and
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discrete process which is carried out in dielectric fluid [4,
7-9].

Dielectric fluid plays a significant role during the machin-
ing process where it helps to improve the efficiency of the
machining process, improve quality of the machined parts,
and flush away the debris from the machining gap. Usually,
the dielectric fluids are in the form of mineral oil-based liquid
or hydrocarbon oils. However, these types of dielectric fluids
have certain deficiencies that are related to fire hazard and
environmental problems [9-12]. Therefore, the alternative to
overcome this problem is to use gas dielectric instead of liquid
dielectric during the machining process [3, 4, 9—11].

The idea of using gas instead of liquid as the dielectric fluid
is not fully agreed by certain researchers because of the ero-
sion effect. Normally, the erosion effect is small when the
sparks are generated in the air due to the energy lost.
Moreover, one of the key functions of the dielectric fluid is
to restrict the spark generation where higher density of energy
is achievable during the machining process. This mechanism
is only applicable when the dielectric fluid is in the liquid form
[13-15]. Normally, the dynamic plasma pressure rises and the
bubble of vapour expands when the sparks are in the liquid
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dielectric. However, due to the restriction of the plasma
growth caused by the surrounding of the liquid dielectric,
the bubble collapses and removes the molten metal out of
the crater when the temperature decreases [13, 14]. As a result,
higher amount of materials is removed when the liquid dielec-
tric is used during the machining process compared to the gas
dielectric [15]. Despite the disagreements, gas as the dielectric
fluid for EDM process was first introduced by NASA in 1985
which is known as the dry EDM (DEDM) [9, 14].
Conventional experimental method, one-factor-at-a-time
(OFAT), and statistical experimental method, design of experi-
ment (DOE) [16, 17], are two types of experimental approach
used in conducting this research. OFAT is a conventional exper-
imental method where only one factor varies at a time while the
other factors are kept constant [16, 17]. According to some re-
searchers, OFAT proves to be inefficient and unreliable because it
can lead to false optimal conditions. The precision of the estima-
tion of the factor is low since this method is usually regarded as
trial and error. This is because the experimental conclusions are
drawn after data collection for each trial run and are compared
with the observed outcome from the previous result [17]. Even
though this method is not suggested by the statistical community,
it is widely used in the industrial application. This is because the
statistical design only covers the experimental region within the
constraints imposed by the number of test runs allowed [18].
On the other hand, DOE is a statistical experimental method
in determining the relationship between factors affecting a pro-
cess and the output of that process [17]. Plackett-Burman design
is a type of DOE [19, 20] where it allows two levels for each of
the control factors, £, just like a 2k design, yet with much smaller
number of experimental runs, n especially when £ is large. The
total number of experiments, #, normally is equal to k+ 1; k=
number of factors. Moreover, the design is desirable only when n
is a multiple of 4 which means the number of control factor £ is
equal to 3, 7, 11, and 15 [20, 21]. However, for factors that are
not assigned, they are known as dummies. These dummies fac-
tors are used to estimate the error in order to get high-quality
information on the significance of each “real” factor [21-23]. It
is useful in various screening experiments due to its flexibility in
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accommodating various combinations of factors with different
numbers of levels. However, it is capable only in estimating the
main effects of the factors rather than their interactions since it
has a complex aliasing structure [19]. Thus, the objective of this
research is to establish stable micro dry wire EDM (WDWEDM)
process using two different experimental approaches which are
the OFAT and DOE methods.

2 Methodology

Micro dry wire EDM (WDWEDM) process was performed using
an integrated multi-process machine tool DT-110 (Mikrotools Inc.,
Singapore). Stainless steel (SS304) plate (30 mm x 20 mm X
0.5 mm (t)) and tungsten (W) wire (@ 70 pm) were used as the
workpiece and the electrode respectively. Miniaturise products for
electronic components such as the micro-fins are normally fabri-
cated using stainless steel [10, 24, 25]. This material is preferable
due to its high hardenability and resistance against corrosion [10].
On the other hand, tungsten wire with radius between 0.025 and
0.1 mm has high tensile strength, > 1900 MPa, and high load-
carrying capacity. It has the ability to machine small features with
high tolerance and good surface [10, 26].

The workpiece was first grounded manually using 320,
400, 600, and 800 grades of sandpapers respectively.
Subsequently, the workpiece was cleaned in ethanol using
ultrasonic cleaning machine (BRANSON 2510, Virginia)
within 5 min. The machining operation was conducted using
uDWEDM process after the sample preparation was complet-
ed as shown by the schematic diagram in Fig. la. After the
machining, the workpiece once again was cleaned in ethanol
for 5 min using ultrasonic cleaning machine. The measure-
ments of the microchannels machining length were deter-
mined using scanning electron microscope (SEM) (JEOL
JSM-5600, Japan) as shown in Fig. 1b. SEM is a type of
electron microscope, where high-resolution three-dimensional
images are produced [10].

In uDWEDM, the process is considered stable and smooth
if the machining is continuous without any interruption due to
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Fig. 1 a Schematic diagram of the uDWEDM process and b measurement of the machining length estimated using SEM
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any reasons such as wire breakage and wire lag. Therefore, for
this investigation, the machining was continued until the wire
breaks and or machining stops by itself even though the wire
did not break. The machining process has the tendency to stop
when the wire electrode touches and or stuck at the machined
surface. Thus, the machining time was not recorded while the
machining length was used as the response to determine the
stability of the uDWEDM process. Due to this circumstance,
the selections of the parameters were based on the literature
review, capability of machine, type of machining materials,
and tool electrode [10, 25]. There were two types of experi-
mental approach used for this investigation, OFAT and
Plackett-Burman design, which are discussed in the following
subsections.

2.1 OFAT

At the beginning of this study, the parameters and their levels
were totally unknown since tuDWEDM is a new process in the
field of micromachining. Besides that, previous literature also
did not reveal anything regarding this matter based on the
literature review done. Therefore, random selection of param-
eters was chosen to find the parameters that can at least ma-
chine the workpiece. In this way, the parameters and their
levels were identified one by one. The parameters involved
during this investigation were types of dielectric fluid, dielec-
tric fluid pressure, polarity, threshold voltage, wire tension,
wire feed rate, wire speed, gap voltage, and capacitance. The
experimentation approach used for this phase was OFAT. This
approach was chosen due to the simplicity in explaining the
fundamentals of the machining mechanism. For each of the
selected factors, the experiments were repeated three times. It
means that three different microchannels were machined for
each of the experiments. The average of the machining length

from these three microchannels and their standard deviations
were calculated. The results are presented by the graphs in
Section 3. The controlled and fixed parameters are listed in
Table 1.

2.2 Plackett-Burman design

Plackett-Burman design is normally used for screening pur-
poses since it has the ability in estimating the main effects of
the factors or parameters [19, 27]. This design was executed to
verify statistically the results of the OFAT method. Therefore,
the selection of the parameters and their levels used are similar
to the OFAT approach. The controlled and fixed parameters
together with their levels are tabulated in Table 2. Table 2 also
shows the values of the parameters for the high and low levels
which are identical to the highest and lowest values used dur-
ing the OFAT method (Table 1). For this investigation, the
Plackett-Burman design that fits for nine controlled parame-
ters were twelve numbers of experiments. This is because the
design is worthwhile only when the total number of experi-
ments, 7, is a multiple of 4 where the number of control pa-
rameters, k, is equal to 3, 7, and 11 [20, 21]. Since there were
only nine parameters, two dummies were added so that the
total number of controlled parameters would equal to eleven;
k=9+2=11. As a result, a total of twelve experiments (n =

12) were generated as shown in Table 3. The dummies’ factors
are the factors that are not assigned; it helps in estimating the
error to get quality info on the significance of the main factors
[21-23]. Each of the experiments was replicated three times
and the average of the machining length is tabulated in
Table 3. The data were analysed using analysis of variance
(ANOVA) approach at 5% significance level [27] discussed in
Section 4.

Table 1 uDWEDM conditions
for OFAT method

Experimental conditions

Controlled parameters
Dielectric fluid

Dielectric fluid pressure for compressed air (MPa)

Polarity

Threshold voltage (%)

Wire tension (N)

Wire feed rate (Lm/s)

Wire speed (rpm)

Capacitance (nF)

Gap voltage (V)
Fixed parameters

Workpiece

Electrode

Machining length (pm)

Atmospheric air, compressed air
0.0345, 0.0689, 0.1034

Workpiece positive, Workpiece negative
25,24,23

0.0809, 0.1214

02,04

0.5,0.6

100, 10, 1.00, 0.10, 0.01

80, 90, 100, 110

Stainless steel (SS304) (30 mm % 20 mm X 0.5 mm (t))
Tungsten wire (@ 70 um)
300
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Table 2 UDWEDM conditions

for Plackett-Burman design Controlled parameters Symbols Coded levels
Low (— 1) High (+ 1)

Dielectric fluid A Atmospheric air Compressed air
Dielectric fluid pressure (MPa) B 0.0345 0.1034
Workpiece polarity C Negative Positive
Threshold voltage (%) D 23 25
Wire tension (N) E 0.0809 0.1214
Wire feed rate (um/s) F 0.2 0.4
Wire speed (rpm) G 0.5 0.6
Capacitance (nF) H 0.01 100
Gap voltage (V) J 80 110
Dummy1 K -1 +1
Dummy?2 L -1 +1
Fixed parameters

Workpiece Stainless steel (SS304) (30 mm x 20 mm X 0.5 mm (t))

Electrode Tungsten wire (@ 70 pm)

Machining length (pum)

300

3 Results and analysis for OFAT
3.1 Dielectric fluid

Dielectric fluid is important in initiating the electrical dis-
charges between the two electrodes: wire electrode and work-
piece. In addition, it also helps in improving the efficiency of
the machining process as well as flushes away the debris from
the machining gap [9-12]. Figure 2 shows the graph of ma-
chining length with respect to gap voltage for combination of
dielectric fluid and dielectric fluid pressure. Based on the
graph, it was found that only minor machining was possible,

Table 3  Plackett-Burman design for 12 runs of experiments

machining lengths <75 um, when atmospheric air was used
as the dry dielectric fluid during the machining process. The
uDWEDM process has the tendency to stop when the machin-
ing continues further than the machining length. It happens
due to the wire breakage [10]. However, when compressed air
with 0.0345 MPa was used as the dry dielectric fluid during
uDWEDM process, the machining was stable and smooth,
machining lengths > 150 pm. It is due to the breakdown volt-
age mechanism that occurs in gases. The breakdown voltage
(micro-breakdown) phenomenon as stated by the modified
Paschen’s law is only dependent on the gap distance between
the electrodes, d, rather than the gas pressure and the gap

Exp A:
dielectric  fluid pressure workpiece
fluid (MPa) polarity

B: dielectric  C: D:

voltage N)
(%)

(nm/s)

: E:wire F:wire
threshold tension feed rate speed

G: wire H: Jogap K: L:
capacitance voltage dummy dummy

(nF) V) 1 2

Response:
average
machining
length (pm)

(rpm)

1 -1 1 -1 -1 -1
1 1 -1 1 -1 -1
-1 1 1 -1 1 -1
1 -1 1 1 -1 1
-1 1 1 -1
1 1 1 -1 1 1
-1 1 1 1 -1 1
-1 -1 1 1 1 -1
-1 -1 -1 1 1 1
-1 -1 1 1
-1 -1 -1 1

O 00 9 N U AW N —
—_
—_

—_—— -
N o~ o
[
—_
| |
—_ = =
|
—_
|
—_
|
—_
|
—_

1 1 1 -1 1
-1 1 1 1 -1
-1 -1 1 1 1
-1 -1 -1 1 1

1 -1 -1 -1 1
-1 1 -1 -1 -1

1 -1 1 -1 -1

1 1 -1 1 -1

100.73
3.33
7.23

93.60
8.50
96.63
6.20
45.47
1.33
1.67
5.33
2.67

1 -1 1 1 -1
1 1 -1 1 1
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distance between the electrodes (pd) as declared by the clas-
sical Paschen’s law [10, 28-34]. However, in this situation,
the gas pressure is essential since the airflow from the com-
pressed air with 0.0345 MPa pressure assists in maintaining
the ideal gap distance between the electrodes (workpiece and
wire electrode). The gap distance allows the phenomenon of
breakdown voltage to occur which leads to the formation of
microplasma [30, 33, 35]. Hence, compressed air as dielectric
fluid would be the best choice for a stable machining since
there is a continuous airflow with the 0.0345 MPa pressure at
the machining area compared to the atmospheric air.

80 90

100 110
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3.2 Dielectric fluid pressure

In the DEDM process, it is essential to determine the pressure
of gas during the machining process since it affects the forma-
tion of microplasma [30, 33, 35]. Figure 3 shows the graph of
machining length with respect to gap voltage for dielectric
fluid pressure. The uDWEDM process was very unstable
when 0.0609 MPa and 0.1034 MPa were used as the dielectric
fluid pressure. This is caused by the wire breakage that hap-
pens during the machining process which halts the machining
operation. The wire breaks whenever the machining process

Fig.3 Graph of machining length T ’ 2222 0.0345 MPaXYY 0.0689 MPakxX] 0.1034 MPa
with respect to gap voltage for
dielectric fluid pressure as 3004 ¢ T T
indicated by the legend. (10 nF / /
capacitance, 24% threshold 1 /
voltage, compressed air as — 250- T
dielectric fluid, workpiece e
positive polarity, 0.2 um/s wire = i %
feed rate, 0.0809 N wire tension, -
and 0.5 rpm wire speed) S 200
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continues further than the machining length, machining
length < 125 pm (Fig. 3). Aside from the wire breakage, se-
vere thermal damage also happens on the workpiece surface
which is due to the arcing phenomenon: harmful discharges
that lead to an unstable machining operation, excessive elec-
trode wear, and thermal damage on the workpiece and elec-
trode surfaces [10]. However, from Fig. 3, when 0.0345 MPa
dielectric fluid pressure is used, the machining process is
much more stable (machining length >225 pum) with intact
wire. It is due to the formation of the micro-breakdown mech-
anism which is influenced by the gap distance between the
electrodes (d) as stated by the modified Paschen’s law [28—34]
(Subsection 3.1). When modified Paschen’s law is applied in
micro-breakdown mechanism, then ion-enhanced field emis-
sion plays a crucial role in generating the microplasma [10,
28]. Ion-enhanced field emission reacts as an additional elec-
tron source to the microplasma through the new field
emission-driven microdischarges; massive amount of elec-
trons are supplied from the field emission instead of ionization
or secondary emission [29, 36—40]. Furthermore, electric
field, £ is the main reason for the deviation of the Paschen’s
law where it influences the electron emission [10, 29, 30, 35,
38, 41]. As inferred in the previous subsection, even though
the dielectric fluid pressure is a necessity during the machin-
ing operation to sustain the gap distance between the elec-
trodes, the ideal dielectric fluid pressure for the compressed
air in uDWEDM would be 0.0345 MPa.

3.3 Polarity

Polarity is a vital parameter where it has substantial implica-
tions on stability of the machining operation [10, 42]. Figure 4

Fig.4 Graph of machining length
with respect to gap voltage for

several combinations of dielectric
fluid and workpiece polarity as 300+
indicated by the legend. (1 nF i
capacitance, 24% threshold
voltage, 0.2 um/s wire feed rate, —~ 250
0.0809 N wire tension, and g J
0.5 rpm wire speed. The pressure ~
for the compressed air was '-g,’ 200+
0.0345 MPa) c J
Q@
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£
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<
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shows the graph of machining length with respect to gap volt-
age for several combinations of dielectric fluid and workpiece
polarity. Based on the figure, stable machining operation is
attainable when the workpiece polarity is positive with com-
pressed air as the dielectric fluid (machining length >
150 um). This situation is explainable by the occurrence of
the hot anode vacuum arcs (HAVA) at the machining area
[10]. Micro-breakdown mechanism (subsection 3.2) ex-
plained by the modified Paschen’s law is actually similar to
the vacuum breakdown when the gap distance between the
electrodes is less than 5 um [30, 34, 38, 41, 43]. The phenom-
enon is caused by the electrons from the field emission [10,
30, 38, 41]. Thus, ion-enhanced field emission escalates the
generation of microplasma [28]. This brief explanation jus-
tifies the formation of the uDWEDM microplasmas that lead
to the formation of a specific type of vacuum discharge known
as HAVA [10, 30, 33-35]. Hence, the workpiece as the posi-
tive polarity while the wire electrode as the negative polarity
would be the best option for a stable and smooth machining
operation.

3.4 Threshold voltage

Threshold voltage is a minimum voltage that initiates the
breakdown mechanism in order to form discharges [44].
Figure 5 shows the graph of machining length with respect
to gap voltage for threshold voltage. Based on the figure, 24%
threshold voltage is capable in producing the longest
microchannels, >275 pum, using uDWEDM compared to
23% and 25%. These results are explainable by the gap dis-
tance between the electrodes, d, as stated by the modified
Paschen’s law, micro-breakdown phenomenon (Subsections
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3.1 and 3.2). When the gap distance between the electrodes is
less than 5 um and the voltage used is less than 300 V, the
formation of microplasma is possible [10, 34, 43] which is the
same as this situation. For this case, it is assumed that the gap
distance between the electrodes is less than 5 um since the gap
voltage used is less than 110 V. Since the micro-breakdown
mechanism is identical to the vacuum breakdown, ion-
enhanced field emission (Subsection 3.3) in micro gaps is
initiated due to the rapid fall of the breakdown voltage and
the decrement of the gap distance [30, 33, 35, 38]. Hence,
24% of threshold voltage is the best option for a stable ma-
chining process. But the value of the threshold voltage varies
depending on the type of gas used since the micro-breakdown
mechanism differs based on different types of gas composition
used.

3.5 Wire tension

Wire tension controls the tension of the wire between the upper
and lower wire guides where it influences the wire vibration, wire
lag, and wire breakage during the machining process [45-47].
Figure 6 shows the graph of machining length with respect to gap
voltage for wire tension. Based on the figure, stable and smooth
machining with high amount of material removal (machining
length >250 um) is achievable when 0.0809 N wire tension is
used. However, wire breakage frequently occurred when
0.1214 N wire tension was used (machining length < 125 pum).
Normally, high wire tension reduces wire vibration [25, 48], but
in this case, the results are vice versa [10]. The reason behind this
circumstance is due to the forces acting on the wire during the
machining process. The forces are the reaction forces generated

Gap voltage (V)

from the pressure of the gas bubbles during the erosion mecha-
nism, hydrodynamic forces from the flushing system, the elec-
trostatic forces that act on the wire, and the electromagnetic
forces from the spark generation [10, 45, 49, 50]. However, the
reaction force is negligible since the machining process was done
in dry condition. It is because no gas bubbles were generated
during the erosion mechanism [10, 15, 25, 34]. In addition, wire
breakage may also occur due to high amount of stresses devel-
oped in wire [47]. Thus, for this study, stable and smooth ma-
chining process is achievable when 0.0809 N wire tension is
used.

3.6 Wire feed rate

Results for the wire feed rate are shown in Fig. 7, graph of
machining length with respect to gap voltage for wire feed rate.
Based on the figure, stable and smooth uDWEDM is possible to
achieve if 0.2 pm/s wire feed rate is used where the machining
lengths are more than 200 pm. However, the results are opposing
when 0.4 um/s wire feed rate was used. The wire electrode
would easily break during the machining process whenever the
discharges are generated in the inter-electrode gap. In this situa-
tion, the gap distance between the electrodes gradually deterio-
rates causing wire breakage [10, 51]. Hence, it affects the micro-
breakdown mechanism as per mentioned by the modified
Paschen’s law (subsection 3.1 and 3.2). Although the wire does
not break immediately, but the gap remains deteriorated until the
wire breaks [51]. Besides that, wire breakage may easily occur
when the shape of the wire changes due to the formation of the
unwanted discharges between the unflushed debris and the wire
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Fig.6 Graph of machining length ’ 77777 0.0809 N 0.1214 N ‘
with respect to gap voltage for
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legend. (10 nF capacitance, T /
compressed air as dielectric fluid, 7
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electrode [52]. Therefore, for a stable and smooth machining
process, it is proposed to use 0.2 um/s wire feed rate.

3.7 Wire speed

One of the ways to controlled wire wear or wire breakage is by
controlling the wire speed [53]. Figure 8 shows the graph of
machining length with respect to gap voltage for wire speed.
Based on the graph, when 0.6 rpm wire speed is applied, higher
amount of material is removed (machining length >220 pm)

Gap voltage (V)

during the machining operation compared to 0.5 rpm wire speed
(machining length <100 um). Moreover, when 0.5 rpm wire
speed was used, the wire would easily break off during the ma-
chining process. Actually, in utDWEDM, the material removal
mechanism happens in both of the electrodes, wire electrode, and
workpiece [10, 26]. When small amount of materials is removed
from the wire, it causes the wire to wear resulting in wire break-
age. It is due to the higher amount of stress developed in the wire
compared to the wire strength [10, 47]. So, as a resolution,
0.6 rpm wire speed is proposed to be used during the machining

Fig.7 Graph of machining length 300_- _
with respect to gap voltage for . / 1
wire feed rate as indicated by the 280+ ; / v72220.2 um/seq
legend. (1 nF capacitance, 24% . K 0.4 pm/sec
threshold voltage, compressed air 260
as dielectric fluid, 0.0345 MPa = 240 i
dielectric fluid pressure S ]
p > S5 .

workpiece positive polarity, = 2204 T
0.0809 N wire tension, and < L
0.5 rpm wire speed) 8’ 200+

2L 1804

o') -

.E 1604

[ 4

< 1404

O .

< 120 \T\

100+ -
" V& \
60 ' ' ' =
80 90 100 110
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Fig.8 Graph of machining length

with respect to gap voltage for 280-
wire speed as indicated by the .
legend. (0.10 nF capacitance, 260
249% threshold voltage, .

N
&
T

compressed air as dielectric fluid,
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operation because new wire is continuously supplied for a
smooth and stable machining process.

3.8 Capacitance

Figure 9 shows the graph of machining length with respect to gap
voltage for capacitance. Based on the figure, when 100 nF and

Gap voltage (V)

0.01 nF are used, the material removed during the machining
operation is small (machining length <150 pum). Also, when
100 nF capacitance is used, wire breakage would occur during
the machining operation. Higher amount of capacitance has the
ability in producing higher discharge energy where stronger
sparks are generated to erode more material. Due to the high
amount of material erosion, the unflushed debris was trapped at

Fig.9 Graph of machining length | 72222100 nEY 10 nRggssd 1.00 nE== 0.10 nRIIT 0.01 nF |
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the inter-electrode gap causing unwanted discharges between the
tool and the debris. Consequently, small amount of material is
removed from the workpiece [10, 52]. Additionally, higher dis-
charge energy increases the wire vibration which may cause wire
breakage [25]. On the other hand, when too small capacitance
(0.01 nF) is utilised, the discharge energy produced is not suffi-
cient to generate the micro-breakdown voltage mechanism [10].
Hence, for smooth and stable machining, it is suggested to use
capacitance of 10 nF, 1.00 nF, and 0.10 nF.

3.9 Gap voltage

As for the gap voltage, smooth and stable machining operation
is achievable for all the varied values as shown in Fig. 10,
graph of machining length with respect to gap voltage. The
machining length for these gap voltages was more than
280 um. It is due to the formation of microplasma which
involves the micro-breakdown mechanism (Subsections 3.2,
3.3, and 3.4). The mechanism occurs when there is a suffi-
ciently high electric field to accelerate the electrons [10, 28,
33, 36]. Usually, gap voltage influences the formation of the
electric field [10, 54, 55]. Hence, smooth and stable machin-
ing process is possible for all the values, 80 V, 90 V, 100 V,
and 110V, of the gap voltage.

4 Results and analysis for Plackett-Burman
design

Plackett-Burman design is used to statistically validate the
results of the OFAT method. The results of the experiments

Fig. 10 Graph of machining 3004
length with respect to gap voltage.
(1 nF capacitance, 24% threshold
voltage, compressed air as
dielectric fluid, 0.0345 MPa
dielectric fluid pressure, — 280~
workpiece positive polarity, g
0.0809 N wire tension, 0.2 um/s =
wire feed rate, and 0.5 rpm wire _.-C_,
speed) o 2604
[
<
(@)}
£
.E 2404
e
(&)
©
=
220
2004
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are analysed statistically using analysis of variance (ANOVA).
Initially, a half-normal plot of effects (Fig. 11) was selected in
order to find the significant effects of the factors [56]. Based
on the figure, A (dielectric fluid), B (dielectric fluid pressure),
C (workpiece polarity), H (capacitance), and J (gap voltage)
are the factors that were selected as the significant main effects
since the percentage contribution is more than 5%. As a result,
these factors would be further analysed using ANOVA in or-
der to check the adequacy of the developed statistical model
[25].

The developed model in terms of coded factors is presented
by Eq. 1 where / = machining length (um), A = dielectric fluid,
B = dielectric fluid pressure, C = workpiece polarity, H =
capacitance, and J = gap voltage. The developed model using
coded factors is desirable since it helps determine the most
significant factors that have an effect on the response [20].

I =31.06 + 19.694-9.85B + 27.25C
+ 11.08H-10.98. (1)

In order to ascertain the significance of the developed mod-
el, the machining length for high and low parameters was
calculated using Eq. 1 [57]. From the calculation, it was found
that the machining length for high, /., and low, [, coded
parameters are 68.25 pum and — 6.13 um respectively (g =
68.25 um and /,,, = —6.13 um). The positive value of ma-
chining length for high coded parameters indicates that there
is a machining process between the wire electrode and the
workpiece. Meanwhile, the negative value of the machining
length for low-coded factors shows that the machining process

80 90
Gap voltage (V)

100 110
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between the wire electrode and the workpiece is interrupted.
Thus, it proves that the developed model is significant.

Table 4 presents the statistical analysis using ANOVA for
Plackett-Burman design. The model F-value of 16.22 implies
that the model was significant at high level of confidence [25].
The significance of the model is also clarified by the relatively
low value of Prob > F, 0.0020. The F-value is statistically valid
because it measures on how well the factors describe the

|Standardized Effect|

variation in the mean of data. Higher F-value implies that the
estimated factor effects are real since the factors are able to ex-
plain adequately the variation in the data especially related to its
mean. In general, the F-value is inversely proportional to Prob >
F [58]. From the table, it is observed that the most significant
factor would be C (workpiece polarity) with Prob > F of 0.0007
followed by A (dielectric fluid), H (capacitance), and J (gap
voltage). As for factor B (dielectric fluid pressure), the value of

Table 4 ANOVA for Plackett-

Burman design Source Sum of squares DF Mean square F-value Prob > F
Model 17,646.76 5 3529.35 16.22 0.0020
A — Dielectric fluid 4650.52 1 4650.52 21.37 0.0036
B — Dielectric fluid pressure 1164.93 1 1164.93 5.35 0.0599
C — Workpiece polarity 8912.57 1 8912.57 40.96 0.0007
H — Capacitance 1473.34 1 1473.34 6.77 0.0405
J— Gap voltage 1445.41 1 1445.41 6.64 0.0419
Residual 1305.41 6 217.57
Corrected total 18,952.18 11
Standard deviation 1475 R 0.9311
Mean 31.06 Adjusted R* 0.8737
Coefticient of variation 47.49 Predicted R 0.7245
Predicted residual error of sum of square 5221.66 Adequate precision 9.236
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Fig. 12 Main effects plot for a dielectric fluid vs. machining length, b
workpiece polarity vs. machining length, ¢ capacitance vs. machining

@ Springer
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Prob > F; 0.0599, indicates that the factor is insignificant since
the Prob > F-value is more than 5% [25].

Moreover, the variability amount of the mean of the
data represented by the R? is around 0.9311. It indicates
that 93.11% of the factors play a vital role in the response.
The model is sufficient in explaining most of the variabil-
ity in the experiment results because the R* value is great-
er than 0.75 [25, 59]. The value of the predicted R” is in
reasonable agreement with the value of the adjusted R
since the difference is around 0.15 [25, 60]. As for the
signal-to-noise ratio expressed through the adequate pre-
cision, 9.236 shows that the signal is tolerable since the
value is greater than 4. Therefore, this model can be used
to navigate the design space [58, 60]. Hence, based on
these statistical characteristics, it can be concluded that
the model is adequate to determine the main effects of
the factors.

Figure 12 shows the main effect plots of the statistical-
ly significant factors. The graphs were used to estimate
the values of the significant factors in order to achieve a
maximum machining length. The results suggested that
maximum machining length is achievable when com-
pressed air is used as the dielectric fluid (factor A), posi-
tive polarity is used as the workpiece polarity (factor C),
capacitance (factor H) is set at higher value, gap voltage
(factor J) is set at lower value, and 0.0345 MPa is used as
the dielectric fluid pressure (factor B). As a result, the
strength of each of the factors could be ascertained [27]
based on this statistical analysis.

5 Conclusion

In this research, uDWEDM was presented as a prospec-
tive fabrication technique to produce structures with high
accuracy and precision. The parameters involved were
types of dielectric fluid, dielectric fluid pressure, polarity,
threshold voltage, wire tension, wire feed rate, wire speed,
gap voltage, and capacitance. The stability of uDWEDM
was determined using two different experimental ap-
proaches which were conventional experimental method,
OFAT, and statistical experimental method, Plackett-
Burman design. Plackett-Burman design was used to ver-
ify the results obtained from the conventional method.
This research showed:

1. Types of dielectric fluid, dielectric fluid pressure, work-
piece polarity, threshold voltage, wire tension, wire feed
rate, wire speed, gap voltage, and capacitance are the pa-
rameters that have been identified using OFAT and DOE
methods for uninterrupted, stable, and smooth uDWEDM
process. Smooth and stable uDWEDM process previous-
ly was impossible to achieve since the parameters and

their levels were unknown where it hinders the industrial
applications. This investigation eventually opens the door
for uDWEDM to be implemented in the industrial sector.

2. Based on the OFAT method, the results revealed that sta-
ble and smooth machining operation is achievable when
compressed air is used as the dielectric fluid, 0.0345 MPa
dielectric fluid pressure, workpiece positive polarity, 24%
threshold voltage, 0.0809 N wire tension, 0.2 pwm/s wire
feed rate, and 0.6 rpm wire speed. As for the capacitance,
smooth and stable machining operation is attainable when
10 nF, 1.00 nF, and 0.10 nF are used. Meanwhile, for the
gap voltage, all the values are applicable in producing a
stable and smooth machining operation without breaking
the wire electrode. Therefore, it is proposed that the ca-
pacitance (10 nF, 1.00 nF, and 0.10 nF) and the gap volt-
age (80 V, 90 V, 100 V, and 110 V) are the factors that
should be considered for further investigation.

3. Placket-Burmann design was used to validate statistically
the results obtained using the OFAT method. Based on the
results, it was found that dielectric fluid, workpiece polar-
ity, capacitance, gap voltage, and dielectric fluid pressure
have significant effects on the machining length. It means
that a smooth and stable machining operation is achiev-
able by controlling these five factors. However, for the
experimentation purposes, the selection of the dielectric
fluid, dielectric fluid pressure, and polarity should remain
as the fixed parameters, compressed air as dielectric fluid,
0.0345 MPa dielectric fluid pressure, and workpiece pos-
itive polarity, in order to achieve a smooth and stable
machining operation. This means that wire rupture can
be avoided during the machining operation. Therefore,
the results of the validation are similar to the results of
the OFAT method where capacitance and gap voltage
should be employed for further investigation.

4. In the field of micromachining, tDWEDM is still a new
research area. Therefore, there are no extensive research
outcomes that have been reported. Hence, reference for
comprehensive benchmarking is unavailable. The find-
ings are benchmarked with Hoang and Yang [61],
Macedo et al. [35], and Macedo et al. [62].
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