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Abstract
In the last years, there have been rapid developments in social robotics, which bring about the prospect of their application as 
persuasive robots to support behavior change. In order to guide related developments and pave the way for their adoption, it 
is important to understand the factors that influence the acceptance of social robots as persuasive agents. This study extends 
the technology acceptance model by including measures of social responses. The social responses include trusting belief, 
compliance, liking, and psychological reactance. Using the Wizard of Oz method, a laboratory experiment was conducted 
to evaluate user acceptance and social responses towards a social robot called SociBot. This robot was used as a persuasive 
agent in making decisions in donating to charities. Using partial least squares method, results showed that trusting beliefs and 
liking towards the robot significantly add the predictive power of the acceptance model of persuasive robots. However, due 
to the limitations of the study design, psychological reactance and compliance were not found to contribute to the prediction 
of persuasive robots’ acceptance. Implications for the development of persuasive robots are discussed.

Keywords  Persuasive robots · Technology acceptance model (TAM) · Social responses · Partial least square (PLS) · 
Human–robot interaction (HRI)

1  Introduction

Social robotics is a domain that focuses on the design of 
robots for social communications with humans using ver-
bal and non-verbal cues [1, 2]. Nowadays, social robots 
can be used to assist humans in daily life and might linger 

most of the time in the vicinity of humans, comparable to 
smartphones [3, 4]. The growing interest in social robot-
ics makes it relevant to examine the potential of robots as 
persuasive technologies that can support people in changing 
their attitudes and behaviours, which for brevity we refer 
to them as persuasive robots. Earlier studies demonstrated 
that social robots could play an important role in persuading 
people [5–7]. Persuasive robots have been employed in a 
broad range of applications for instance as an assistant to the 
elderly community [6] and providing recommendations in 
several decision-making tasks like helping people to choose 
food [5] and movies [8].

Research in persuasive robots draws heavily from the 
study of persuasion in the context of human–human inter-
action. According to the Media Equation [9], people engage 
with non-living things such as robots just like they behave 
and respond to other people in real life. Thus, the interac-
tion with robots is more in line with human–human inter-
action rather than human-technology interaction [10, 11]. 
Research in social robotics has elaborated on this theme, 
producing a wealth of knowledge regarding social responses 
to robotics. More recently, special attention has been paid to 
the social responses to persuasive robots. Related research 
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informs us regarding social responses to persuasive robots 
such as engagement, psychological reactance, trust and lik-
ing [12–14].

The recent versions of TAM have some issues to be used 
as an acceptable model for persuasive robots. That is, ear-
lier research has claimed that interaction with robots differs 
from the interaction with other technological artefacts like 
laptops or smartphones due to the robots’ embodiment and 
the explicitly designed social features in the interaction with 
humans [15, 16]. This claim leads to the question of how 
such social features and social responses to technologies 
can influence the acceptance of robots as persuasive agents. 
Bartneck et al. [17] argued that the biggest challenge in 
designing social robots is to ensure that people are willing to 
interact with and accept to use these robots in everyday life.

Luoho et al. [18] defined technology acceptance as of 
how people accept to adopt a specific technology for usage. 
Based on the theory of reasoned action (TRA), Davis [19] 
designed the first technology acceptance model (original 
TAM) [20] to explain people’s acceptance of information 
systems and technology adoption in 1989. The original 
TAM predicts people’s intention to use technology by indi-
viduals based on several key determinants like perceived 
usefulness and attitude toward using [20]. Subsequently, 
emphasising social and cognitive factors such as subjective 
norms, demonstrability, voluntariness and experience as 
key determinants, TAM 2 [21] aimed to predict user adop-
tion behaviour towards systems used in organisations over 
time. Later on, a unified theory of acceptance and use of 
technology (UTAUT) [22] was introduced to evaluate users’ 
intentions to use any technology or information system in 
general by explaining user intentions to use an information 
system and subsequent usage behavior. The key determi-
nants in the UTAUT include performance and effort expec-
tancies, social influence as well as facilitating conditions. 
After that in 2008, the TAM 3 [23] was developed to support 
decision making in an organisation by combining the key 
determinants from TAM 2 and introducing new determinants 
for perceived ease of use such as perceived enjoyment and 
computer anxiety. Eventually, UTAUT 2 [24] was introduced 
by adding hedonic motivation, price value and habit as deter-
minants of acceptance and use, especially when predicting 
consumer behaviour.

We argue that social responses that might be invoked by 
a robot in persuasive attempts are also the key determinants 
for people to accept social technology. In this paper, we are 
interested in investigating the roles of social responses (e.g., 
compliance and reactance) in shaping positive experiences 
and inducing users’ satisfaction toward persuasive interac-
tions with a robot. On the one hand, we can expect that users 
may reject to use a robot that annoys them. On the other 
hand, we can expect that users may have the interest to touch 
a robot or show affective response (such as highly engage) 

with a robot that makes them happy. Related studies [13, 14, 
25] demonstrated how social cues displayed by robots could 
influence the affective responses toward persuasive robots. 
Persuasive robots with minimal social cues, for example, 
evoked less reactance compared to persuasive robots with 
enhanced social cues in a decision-making game [26]. Siegel 
et al. [12] found that persuasive robots with the opposite 
gender than the users were more trustworthy and engaging 
compared to the similar gender robots in the donation task. 
Ham and Midden [27] provided evidence that people com-
plied more with the persuasive robots that provided negative 
feedbacks in promoting energy-saving behaviour than the 
same robots with positive feedbacks. However, these studies 
do not yet help us to understand whether social responses 
like reactance and compliance are the key determinants for 
people to accept robots as persuasive agents.

This study investigates the acceptance of persuasive 
robots using all key determinants from the original TAM 
[20] and a key determinant from TAM 3, that is, perceived 
enjoyment [23]. TAM is considered as the most popular 
acceptance model and widely used in several fields due to 
its parsimony and specificity in predicting acceptance for 
diverse populations of users, strong theoretical base, and 
substantial empirical support for its exploratory power [28, 
29]. We used TAM as the basis for our model instead of 
other acceptance models like UTAUT since UTAUT mod-
els [22, 24] require a large number of key determinants and 
moderators (e.g., up to forty-one variables to predict inten-
tions) [30] in attaining high reliability of prediction [31]. 
Thus, UTAUT models [22, 24] suffer from vast numbers 
of key determinants which later require a big sample size 
in testing the model. To retain the simplicity of our pro-
posed model, we only selected the key determinants of the 
original TAM [20] and a key determinant from TAM 3 [23]. 
This selection has been done since several key determinants 
from social responses will be integrated into the model later. 
More importantly, most of the additional key determinants 
in TAM 2 [21], TAM 3 [23], and UTAUT models [22, 24] 
(compared to the original TAM [20]) are not very relevant 
for the acceptance and use of persuasive robots. Therefore, 
measuring output quality and self-efficacy (examples of 
key determinants in TAM 3 [23]) are out of our research 
interests. However, we included the variable of perceived 
enjoyment from TAM 3 [23] in our model since enjoyment 
is a type of social response. Similar to TAM 2 [21], TAM 
3 [23], and UTAUT models [22, 24], key determinants pro-
posed in other acceptance models such as confirmation in 
Confirmation-Expectation Model [32] and interactivity in 
Uses and Gratifications Theory [33] are also not applica-
ble and do not apply to our experimental context. Original 
TAM [20] consists of several key determinants which are 
perceived usefulness (Usefulness), perceived ease of use 
(Ease), attitude towards using (Attitude) and behavioral 
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intentions (Intentions). As mentioned earlier, we also used 
perceived enjoyment (Enjoy) as a key determinant in our 
model adopted from TAM 3 [23]. Within the context of our 
experiment, Usefulness is defined as the degree to which 
people believe that the persuasive robots would be assistive 
in making decisions [19]. The term Ease refers to the degree 
to which people believe that using the technology (i.e., the 
persuasive robot) would be free of effort [19]. Whereas Atti-
tude covers the user’s feelings (evaluative effect) about the 
technology (in this study the persuasive robot) [19] while 
Intentions refer to the strength of people’s intention about 
using the persuasive robots [19]. Enjoy can be defined as 
the pleasant feelings associated with the use of persuasive 
robots, apart from the (positive) performance consequences 
[34].

TAM has been extended to evaluate technology accept-
ance in other domains such as in the e-learning system [35], 
smart in-store technology [36] and internet banking adoption 
[37]. To date, TAM has been applied to predict the accept-
ance of social robots in [29] frontline service [38], education 
[39] and healthcare [40]. Earlier research pointed out that 
social presence was one of the predictors in modelling the 
acceptance of robots in human–robot interaction [41]. Oth-
ers, like Heerink et al. [42], claimed that social influence 
[22] and trust were the key features for the acceptance of 
assistive social agents by the elderly.

We propose to extend the existing TAM with the evalu-
ation of social responses towards the robot by measuring 
users’ trust (trusting beliefs (Beliefs) and trusting behaviours 
(Compliance)), psychological reactance (Reactance), and 
liking (Liking). Scholars like McKnight et al. [43] explained 
that the concept of trust consists of several elements, includ-
ing trusting beliefs (Beliefs) and trusting behaviours (Com-
pliance). Vidotto et al. [44] elaborated on trusting beliefs as 
a modulator in inducing people to believe that the persuasive 
robot is a trustworthy advisor. Trusting behaviour is defined 
as “actions that demonstrate how a trustor relies upon a 
trustee, thereby avoiding any control” [43]. On the other 
hand, compliance is a key measure of successful persua-
sive attempts. When someone complies with the attempts, 
it can be seen through his/her behaviour that he/she acts in 
accordance with the advice given. In this study, we measured 
trusting behaviours using the compliance score, reflecting 
how many times the users comply with the order or advice 
given by the persuasive robot as used in the earlier study 
[14]. Liking describes the feelings of friendliness, kind and 
nice towards the robots [45].

On the other hand, the concept of Reactance was intro-
duced by Brehm [46] and elaborated in later studies [47, 
48]. Psychological reactance can be triggered in persuasive 
attempts, especially when someone’s freedom in making 
decisions is limited. Reactance may be manifested in peo-
ple’s behavior causing them not to comply or even do the 

opposite than what is requested by the persuadee (in our 
case the persuasive robots). Indeed, psychological reactance 
may also lead to irrational behaviors and thoughts aimed at 
re-establishing individual freedom [49, 50]. Earlier research 
shows that reactance can be assessed using the intertwined 
model of reactance, consisting of feelings of anger and nega-
tive cognitions [51] using questionnaires [47, 52, 53].

In this paper, we report an experiment that used SociBot 
as a persuasive robot in a decision-making game. The fol-
lowing sections describe the methods used and dwells on 
the results of our study. While the implications of social 
responses for the development of TAM for persuasive robots 
is the concluding part.

1.1 � The Current Study

Earlier works [54–56] reported both positive and negative 
responses to social cues in robots. Perhaps counter-intui-
tively, the studies by Ghazali et al. [14, 25, 57] suggested 
that persuasive robots were more effective when endowed 
with only minimal social cues such as eye-blinking rather 
than implementing several cues at once, e.g., combining 
head movement, eye expression and intonation in the voice. 
Further, it has been shown that persuasive robots should 
be designed with likable social features such as having a 
neutral face (less expressive) and facial characteristics that 
were known to evoke trust (see [58]). Additionally, the robot 
should mimic the humans head’s movement, and praise 
humans only at appropriate times during interaction [59]. 
Such social cues contributed to positive social responses 
toward persuasive robot namely low psychological reac-
tance, high trusting beliefs, high trusting behaviours (com-
pliance) and/or high liking. While such social responses 
have been demonstrated experimentally, it is not yet clear 
what their importance is in regard to whether people will 
be prepared to adopt social robots as persuasive agents. For 
example, we do not yet know if people will be more likely 
to use a robot they trust more, they like more and that will 
make them feel less reactant as a persuasive agent.

Using the social cues that were found to be positively 
perceived by humans in the earlier studies [14, 25, 57], 
this study mainly aims to extend the technology accept-
ance (TAM) to account for the influence of social responses 
onwards the persuasive robot. This study is developed to:

Obj1  Propose an explanation of the acceptance of persua-
sive robots using TAM.

We used the framework of TAM as a baseline in this 
study to explain the acceptance of persuasive robots. Ear-
lier research (see [60]) in social robotics [40, 42, 61] utilized 
measurements from TAM in understanding the acceptance 
of robots for daily usage. The key determinants taken from 



1078	 International Journal of Social Robotics (2020) 12:1075–1092

1 3

TAM include Usefulness, Ease, Attitude, and Intentions 
originated from the original TAM [20] and Enjoy from TAM 
3 [23]. Based on the original TAM [19, 20], we expect that 
Usefulness is a determinant of Attitude and Intentions, Ease 
is a determinant of Attitude, and Attitude is a determinant of 
Intentions. Based on the prediction in TAM 3 [23], Enjoy is 
a determinant of Ease.

Obj2  Extend TAM to account for social responses to per-
suasive robots.

We suggest adding four key determinants to represent 
social responses within the PRAM to increase the power of 
prediction for the persuasive robots’ acceptance. The key 
determinants include Compliance, Beliefs, Reactance, and 
Liking because of the arguments presented below in this 
section.

Although there was no clear relation of Compliance with 
the key determinants of TAM in earlier studies especially 
on the acceptance of persuasive robots, Kelman [62] high-
lighted that Compliance could be predicted by Attitude in the 
process of adopting induced behaviour; although this study 
was performed in a different domain (desegregation in pub-
lic schools). Additionally, the Theory of Reasoned Action 
(TRA) [63] claimed that motivation to comply (known as 
Compliance) is a predictor for subjective norms, and subjec-
tive norms are a predictor for Intentions. However, we did 
not include subjective norms in our analysis since we are not 
interested in investigating whether perceived social pressure 
influenced people in the way they behave. While dropping 
subjective norms in our analysis, we expect that Compliance 
is a predictor for Intentions. Furthermore, in this paper we 
investigated whether social responses like Compliance are 
a key determinant for people to accept robots as persuasive 
agents. Relatedly for exploring the roles of Compliance in 
determining Attitude and Intentions, we investigated whether 
(as the first hypothesis contained in PRAM) the higher a 
user’s Compliance, the higher his or her Attitude and Inten-
tions [64] to use the system in the future.

Beliefs have been empirically established as a determi-
nant of Usefulness and Attitude in earlier studies [65–67]. 
Also, previous research by Ghazali et al. [14] demonstrated 
a negative correlation between Beliefs and Reactance. That 
is participants who have more trust in the robot will expe-
rience less reactance in following the advice given by the 
robot. Therefore, it is predicted in our second hypothesis that 
higher Beliefs on the persuasive robot will cause people to 
think that the robot can provide the best advice in selecting 
charity organisations (Usefulness), causing them to comply 
more with the advice given (Compliance) with positive Atti-
tude and less reactance (Reactance).

Although there was no study directly investigating the 
effect of Liking on Intentions, earlier work [22] illustrated 

that Liking is an example of intrinsic motivation associ-
ated with technology usage based on Cognitive Evaluation 
Theory [68]. A more recent study by Rogers [69] showed 
that behavioural intentions (Intentions) in using mobile 
internet is influenced by intrinsic motivation. Thus, in our 
third hypothesis, we expect that Liking is one of the deter-
minants of Intentions. Other researchers [70, 71] reported 
that Liking towards a persuasive robot is positively cor-
related with Beliefs and negatively correlated with Reac-
tance. That is, participants who like the robot more will 
have more trust in it, experience less reactance to follow 
the advice given, and have more intentions to use the robot 
again in the future. Earlier research [14] investigating psy-
chological reactance showed that Liking is a full media-
tor between the facial characteristics of a social robot (an 
independent variable) on Beliefs and Reactance. Thus, it is 
anticipated that Liking is more likely to influence the level 
of Beliefs and Reactance.

In a model of sustainable energy technology accept-
ance, Huijts et al. [72] highlighted those negative feelings 
like anger, fear and worries influence the level of Attitude 
towards using novel technologies. A similar concept of nega-
tive attitudes, psychological reactance (Reactance) was used 
in this study. Thus, based on the implication of negative 
feelings on Attitude [72], we expect that participants who 
experience less reactance will have a more positive attitude 
towards using the robot (as they like the robot [14]). Thus, 
our fourth hypothesis predicts that Reactance determines 
Attitude in the technology acceptance model for the persua-
sive robot.

As described in an earlier study [73], it is expected in the 
fifth hypothesis that people will like (Liking) the persua-
sive robot more if the robot is easy to be used, compared to 
the robots that are cumbersome to use, or even later caused 
frustration. Thus, it is predicted in the fifth hypothesis that 
Ease is a determinant of Liking towards the persuasive robot.

As proposed by the Cognitive Evaluation Theory [68], 
perceived enjoyment (Enjoy) is one of the intrinsic motiva-
tions next to Liking. Thus, similar to Liking, we expect that 
Enjoy is also a determinant of Intentions [69]. This expec-
tation is in line with the flow theory [74]. Also, based on 
earlier research on the acceptance of instant messaging tech-
nology [75] which combined the theory of planned behavior 
[76], TAM [20], and flow theory [74], we propose that Enjoy 
is a determinant of Attitude and Intentions. Thus, we expect 
that participants who enjoy using the robot more will like it 
more, have a more positive attitude towards using the robot 
and have more intentions to use the robot again in the future 
in the sixth hypothesis.

In summary (refer to Fig. 1), when developing the PRAM, 
we hypothesized that:
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H1.	� Compliance.

H1(a).	� There is a significant difference in attitude towards 
using the robot between participants who comply 
more with the request made by the robot and those 
who comply less with the request made by the 
robot.

H1(b).	� There is a significant difference in intentions to use 
the robot again in the future between participants 
who comply more with the request made by the 
robot and those who comply less with the request 
made by the robot.

H2.	 �Trusting beliefs.

H2(a).	� There is a significant difference in reactance score 
between participants who have more trust in the 
robot and those who have less trust in the robot.

H2(b).	� There is a significant difference in perceived use-
fulness score between participants who have more 
trust in the robot and those who have less trust in 
the robot.

H2(c).	� There is a significant difference in attitude towards 
using the robot between participants who have 
more trust in the robot and those who have less 
trust in the robot.

H2(d).	� There is a significant difference in compliance 
score between participants who have more trust in 
the robot and those who have less trust in the robot.

H3.	� Liking.

H3(a).	� There is a significant difference in trusting beliefs 
score between participants who like the robot more 
and those who like the robot less.

H3(b).	� There is a significant difference in reactance score 
between participants who like the robot more and 
those who like the robot less.

H3(c).	� There is a significant difference in intentions to use 
the robot again in the future between participants 
who like the robot more and those who like the 
robot less.

H4.	� Psychological reactance.

H4(a).	� There is a significant difference in attitude towards 
using the robot between participants who experi-
ence less reactance and those who experience more 
reactance.

H5.	� Ease of use.

H5(a).	� There is a significant difference in liking score 
between participants who find the robot easy to 
use and those who find the robot hard to use.

Fig. 1   Hypotheses for PRAM. 
Notes Reactance = Psychologi-
cal reactance, Beliefs = Trusting 
beliefs, Usefulness = Perceived 
usefulness, Ease = Perceived 
ease of use, Enjoy = Perceived 
enjoyment, Attitude = Atti-
tude towards using, Inten-
tions = Behavioural intentions
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H6.	� Enjoyment.

H6(a).	� There is a significant difference in liking score 
between participants who enjoy using the robot 
more and those who enjoy using the robot less.

H6(b).	� There is a significant difference in attitude towards 
using the robot between participants who enjoy 
using the robot more and those who enjoy using 
the robot less.

H6(c).	� There is a significant difference in intentions to use 
the robot again in the future between participants 
who enjoy using the robot more and those who 
enjoy using the robot less.

Obj3  Compare the predictive power in explaining the 
acceptance of the persuasive robots using a technology 
acceptance model and the PRAM.

To determine whether the prediction of behavioural inten-
tions (Intentions) in using the persuasive robots is improved 
by the inclusion of social responses (Reactance, Beliefs, 
Compliance, and Liking).

2 � Methods and Materials

This study was carried out following the recommendations 
of the Code of Ethics of the NIP (Nederlands Instituut voor 
Psychologen—Dutch Institute for Psychologists) and the 
research group on Human-Technology Interaction at Eind-
hoven University of Technology. All subjects gave written 
informed consent following the Declaration of Helsinki. 
This study was reviewed and approved by the Human-Tech-
nology Interaction ethics board at the Eindhoven University 
of Technology.

2.1 � Participants

Seventy-eight participants (41 males and 37 females) were 
recruited with ages ranging between 19 and 52 (M = 26.949, 
SD = 6.524). The experiments lasted 45 min in which partici-
pants were given a €7.5 voucher for university students or staff 
and an extra €2 to the external participants as a token of appre-
ciation. The participants were required to meet the inclusion 
criteria: Normal colour vision and fit for a simple exercise. 
Participants were randomly selected from a local participant 
database with no restriction of age, gender, and nationality.

2.2 � Persuasive Robot

As in the earlier experiments by Ghazali et al. [14, 25, 
57], SociBot a fully programmable robot developed by 

Engineering Arts Limited was used as a persuasive agent.1 
It is a half-body (from head to waist) humanoid robot which 
can display realistic back-projected faces with animated 
facial expressions, mouth movements and a fully articu-
lated neck. This robot is capable of detecting and tracking 
humans’ faces using a high definition RGB camera embed-
ded in its forehead and maintaining eye-contact by moving 
its eyes and head. It also can show emotional expressions 
through programmable face parameters and speech into-
nation. The robot can have different animated faces and is 
equipped with lip-synched speech output with high-quality 
audio.

In this experiment, the SociBot was given a facial image 
of a man with hazel eyes and light brown skin colour tone 
as used in the earlier studies [14, 25, 57] to minimise the 
reactance towards the persuasive robots [14]. We used the 
Wizard of Oz (WoZ) method [77, 78] in this study to create 
a user-friendly human–robot interactive system [79]. Using 
this method, the advice by the SociBot was controlled by the 
experimenter in a control area adjacent to the experiment 
locale. This method was used only to close the loop between 
the participant’s responses and trigger the response of the 
robot. That is, the experimenter controlled the sequence of 
dialogues delivered by the SociBot based on the actions of 
the participants. For example, the SociBot acknowledged the 
decision made by the participant (e.g., ‘Thank you for your 
selection’) only after the participant showed the selected 
envelope in front of the robot’s camera (with two to four 
seconds of delay). All participants debriefed after finishing 
the experiment about the true purpose of this study.

2.3 � Task

SociBot was used as a robotic advisor to guide the partici-
pants in performing two activities. In the first activity, the 
participants were required to do a simple one-minute weight 
shifting exercise. Instructed by the robot, the participants 
were asked to move their body left and right two times, each 
side approximately for three seconds. A manual for this exer-
cise was placed on the right-hand side of the experimental 
table. This first activity was designed to increase the partici-
pants’ awareness of the robot capability in mimicking the 
participants’ head movements.

Persuasive attempts by the robot only started in the sec-
ond activity. For the second activity, the participants were 
asked to make several decisions for donations. Five coins 
with €1 value were placed in front of the participants. In 
this experiment, the participants must allocate those euros 
to charity organisations. In five tasks, the participants were 
presented with different charity organisations in five differ-
ent colours of folders. For example, in the first task, several 

1  https​://www.engin​eered​arts.co.uk/socib​ot/.

https://www.engineeredarts.co.uk/socibot/
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animal charity organisations were presented in the red colour 
folder. The participants had to choose and give one of these 
animal charity organisations €1.

So, generally, in each of the five tasks, the participants 
chose one charitable organisation to which they decided to 
give the €1. In each task, the robot will introduce the charity 
organisations. Then, the robot will advise the participants on 
which of these to give the €1. As emphasised by the experi-
menter and the robot, the participants could choose either 
to follow the robot’s advice (donate the €1 to the charity as 
suggested) or make their selection by choosing one of the 
other charities listed (ignore the advice). The experimenter 
and the robot emphasised that there is no right or wrong 
answer in this donation task before the experiment started. 
In the folder of each task, there were envelopes representing 
the charity organisations. The participants selected a charity 
organisation by putting the €1 coin into the charity organisa-
tion’s envelope.

The participants were told that this experiment involves 
real money and real choices. That is, the total of €5 coins 
donated by them in five tasks would be paid afterwards to 
the selected charity organisations by the experimenter. This 
was done to increase the ecological validity of the choice 
behaviour and to ensure involvement by participants. The 
latter has been found to be important in earlier studies [25, 
80]. In avoiding the participants donating money based on 
their personal preferences, we kept the identity of the charity 
organisations as ambiguous as possible by only putting the 
initial for the charity organisations on the envelope.

2.4 � Procedure

Each participant was greeted upon arrival and sat on a chair 
facing the robot (see Fig. 2). A laptop was placed near the 

participant, for filling in the pre- and post-experiment ques-
tionnaires. An Internet Protocol (IP) camera was attached 
near to the robot to record the activities during the experi-
mental session. This experiment consisted of three phases: 
(1) Introduction [10 min] (2) Experiment [20 min] (3) Clos-
ing [15 min].

In the first phase, the participant read and signed a con-
sent form. After that, the experimenter summarised the 
experimental procedure and demonstrated how to do the 
exercise and donate the money. The experimenter left the 
experimental room after asking the participant to fill in their 
demographic information using the laptop provided.

The second phase started as the robot introduced itself 
after detecting the participant’s face. During this phase, 
the participant was asked first, to do a simple exercise as 
explained earlier. The robot praised the participant at the 
end of the first activity only if the participant had done the 
instructed exercise by saying ‘Good job!’ Next, the robot 
introduced the first task for donation activity, for the first 
charity organisation (e.g., animal charity organisation). The 
participant was asked to take a specific colour folder (e.g., 
green folder) and take a look at the envelopes with the names 
of animal charity organisations inside that folder. After that, 
the robot would provide advice to the participant using high 
controlling language by asking him/her to donate the €1 coin 
to a specific charity. After making up his/her mind to which 
charity the participant wished to donate the money, the par-
ticipants were required to put the €1 coin in the selected 
charity’s envelope and show the envelope to the robot for 
record. The robot praised the participant’s selection in case 
the participant chose to donate the money to the charity sug-
gested by the robot. Examples of social praise are ‘Thank 
you, it is a wise selection’ and ‘Nice, I like your choice.’ 
Alternatively, the robot acknowledged the selection made 
by saying ‘I acknowledge your decision.’ High controlling 
language was used during the persuasive attempts for higher 
chances of compliance as demonstrated in the earlier study 
[57], e.g., ‘You have to select the < charity A > to donate the 
€1 for the animal charity organizations’ and ‘Definitely, you 
need to donate the €1 to the < charity A>’.

After making all donation activities, the robot asked the 
participant to fill in the questionnaire on the laptop provided 
in the third phase of the experiment. The participant was 
debriefed by the experimenter in oral form and received a 
small monetary reward or research credits for the participa-
tion at the end of the experiment.

2.5 � Measures

Each questionnaire was constructed based on the questions 
and methods used in earlier technology acceptance studies. 
The question items were taken from such earlier research 
(for details see below), while the wording of some questions 

Fig. 2   Experimental set ups. A written informed consent had been 
obtained from the individual for the publication of this image
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had to be adapted to the technology under investigation here 
(persuasive robots). Specifically for the TAM constructs, the 
questionnaire used in this paper was mainly from the Almere 
model [42] which was developed to investigate the accept-
ance of social robots by the elderly (see also [29]). For social 
response constructs, the questionnaire was taken from the 
latest studies [14, 26] which relate to persuasion activity in 
human–robot interaction applications.

The phrasing of the questionnaires was adapted to the 
content of our study without changing the original content 
of the questions—see Table 1. Each measure that overlaps 
between the constructs was asked only once. The question 
items assessing the psychological constructs measured using 
our questionnaires showed high internal reliability (see high 
Cronbach’s α values reported below).

Being different from other constructs, the compliance 
of participants was measured as the number of times par-
ticipants changed their initial decision to comply with the 
agent’s advice. Participants had five-choice moments during 
the experimental session. In case the initial choice was the 
same as the final choice, then the participants would not get 
any compliance points for that particular task. In contrast, 
if the initial and final choices were inconsistent, it showed 
that the participants were successfully being persuaded by 
the advisor to change their choice, and they were awarded 
1-point for that particular task. E.g., if a particular partici-
pant would follow the social agent’s advice and changed his/
her final choice as instructed for task number 1,3,4 and was 
incompliant for the other two tasks, then he/she would be 
given the compliance score of 3.

We used the SmartPLS version 3.2.7 to estimate the 
validity of the PRAM using partial least square (PLS) path 
modelling method [81]. Instead of evaluating covariance of 
the variables (like in AMOS, Stata, etc.), SmartPLS uses 
variance values to identify the relationship between key 
determinants (or known as latent variables in PLS terms) 
[82, 83]. SmartPLS was chosen since it is suitable for non-
normally distributed data (as we find that some of our latent 
variables are skewed and have kurtosis: see Table 1) and 
small sample sizes (less than 200). Additionally, SmartPLS 
is good at handling a large number of indicators [84].

3 � Findings

3.1 � Preliminary Analysis

Preliminary analysis searched for outliers in the data and 
showed that there were none. The descriptive statistics for 
the latent variables used in this study are shown in Table 2.

According to George and Mallery [85], the accept-
able range for skewness and kurtosis are ± 1.96. It is 

demonstrated in Table 2 that Reactance, Ease, and Attitude 
strayed from a normal distribution.

To check the potential effects of participants’ age and 
gender on the constructs, two Multivariate Analysis of 
Variance (MANOVA) tests was conducted on Usefulness, 
Enjoy, Intentions, Beliefs, Liking and Compliance. Results 
showed that (1) no significant effect of age2 and (2) no sig-
nificant effect of gender3 on the stated dependent variables. 
For the non-parametric constructs, the Kruskal–Wallis H 
test showed that there was no statistically significant differ-
ence in age4 and gender5 on Ease and Attitude. Additionally, 
the Kruskal–Wallis H test was conducted to check the main 
effect of participants’ age and gender on Reactance (feelings 
of anger and negative cognitions). As expected, we found 
that (1) no significant effect of age, χ2(2)=17.84, p =0.72 
and (2) no significant effect of gender, χ2(2)=2.41, p =0.12 
on Reactance.

The 2-tailed Pearson correlation between the two com-
ponents of Reactance, that is feelings of anger and negative 
cognitions, was 0.28, p = 0.02. In line with the proposed 
conceptualisation of reactance [47], our results showed that 
feelings of anger and negative cognitions were correlated. 
Results implied an overlap between the Reactance con-
structs. Thus, to test the hypotheses in the PRAM, the reac-
tance score (Reactance) for each participant was calculated 
by averaging the participant’s score on feelings of anger and 
negative cognitions.

3.2 � Objective 1

The first aim of this study was to verify that the technol-
ogy acceptance model (TAM) can be employed to explain 
and predict the acceptance of persuasive robots. This model 
composed of five latent variables as Usefulness, Ease, Enjoy, 
Attitude and Intentions.

3.2.1 � Psychometric Properties of the TAM Model

We ran a confirmatory factor analysis to observe the reli-
ability and validity of the data by examining how well the 

2  Main effect of age on (a) Usefulness, F(22, 55) = 1.11, p = 0.37, 
(b) Enjoy, F(22, 55) = 1.06, p = 0.41, (c) Intentions, F(22, 55) = 1.72, 
p = 0.054, (d) Beliefs, F(22, 55) = 1.22, p = 0.27 (e) Liking, F(22, 
55) = 1.04, p = 0.43, (f) Compliance, F(22, 55) = 1.13, p = 0.35.
3  Main effect of gender on (a) Usefulness, F(22, 55) = 0.40, p = 0.53, 
(b) Enjoy, F(22, 55) = 0.32, p = 0.57, (c) Intentions, F(22, 55) = 0.32, 
p = 0.57, (d) Beliefs, F(22, 55) = 0.01, p = 0.93 (e) Liking, F(22, 
55) = 0.72, p = 0.40, (f) Compliance, F(22, 55) = 0.02, p = 0.88.
4  Main effect of age on (a) Ease, χ2(2) = 21.68, p = 048 (b) Attitude, 
χ2(2) = 25.01, p = 0.30.
5  Main effect of gender on (a) Ease, χ2(2) = 0.24, p = 0.62 (b) Atti-
tude, χ2(2) = 0.12, p = 0.89
  .
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Table 1   Scales used to assess the constructs of the tested model

Usefulnessa

 By using this robotic advisor…
 Use1. I can decide more quickly and easily to which charity I want to donate than without using this robotic advisor
 Use2. I can better decide to which charity I want to donate than without using this robotic advisor
 Use3. I am better informed about the suggested charities
 Use4. I can decide more quickly and more easily whether I want to donate the money to the suggested charity or not
 Use5. I can better decide whether I want to donate the money to the suggested charity or not
 Sources All Use items were adapted from a study by Heijden [7] in the acceptance of hedonic information system. Cronbach’s α = 0.86
Easea

 Ease1. Interaction with this robotic advisor is clear and understandable
 Ease2. Interaction with this robotic advisor does not require a lot of mental effort
 Ease3. I find it is easy to use this robotic advisor
 Ease4. I believe that the use of this robotic advisor is trouble-free
 Sources All Ease items were adapted from a study by Venkatesh (2008) studying TAM 3 [10]. Following Chauhan [9], we replaced the fourth 

item of Perceived Ease of Use (PEOU4: I find it easy to get the system to do what I want it to do) from TAM 3 (see Venkatesh [10]) by the cur-
rent Ease 4 item, slightly rephrasing it to fit the current context. Cronbach’s α = 0.72

Attitudea

 Att1. I have a favourable attitude towards using this robotic advisor
 Att2. I like the idea of providing information about the charities through this robotic advisor
 Att3. I believe that this robotic advisor is beneficial in improving my decision
 Att4. Using this robotic advisor to improve my knowledge about the charities would be a good idea
 Sources Att1 and Att2 were adapted from a study by Davis et al. [13]; Att3 and Att4 were adapted from a study by Chen et al. [54] in the accept-

ance of robot for partner dance-based exercise. Cronbach’s α = 0.88
Intentionsa

 Assuming I have access to this robotic advisor again…
 Int1. I would intend to use it
 Int2. I predict that I would use it
 Int3. I would certainly use it
 Int4. I would say something favourable about this robotic advisor
 Sources Int1 and Int2 were adapted from a study by Venkatesh (2008) in TAM 3 [10]; Int3 and Int4 were adapted from a study by Chauhan [9] 

in the acceptance of mobile money. Cronbach’s α = 0.94
Enjoya

 Enjoy1. I would find using this robotic advisor to be enjoyable
 Enjoy2. I would find using this robotic advisor to be fun
 Enjoy3. I would find using this robotic advisor to be entertaining
 Enjoy4. I would find using this robotic advisor to be exciting
Sources: Enjoy1 and Enjoy2 were adapted from a study by Venkatesh (2008) in TAM 3 [10]; Enjoy3 and Enjoy4 were adapted from a study by 

Chen et al. [54]. Cronbach’s α = 0.91
Reactance
 bReac1. I feel irritated towards this robotic advisor
 bReac2. I feel angry towards this robotic advisor
 bReac3. I feel annoyed towards this robotic advisor
 bReac4. I feel aggravated towards this robotic advisor
 cReact5. Please report all the thought you had while receiving the advice from this robotic advisor, even those thoughts had nothing to do with 

the advice. Then, please indicate for all thoughts whether it is positive (P), neutral (Neu) or negative (N) thought.
 Sources All Reac items (except Reac5) were adapted from studies by Dillard and Peck [80] and Dillard et al. [81]; React5 were adapted from 

a study by Dillard and Shen [59]. The negative cognitions (reported in React5) were counted based on the procedure proposed by Dillard and 
Shen [59] and according to the cognition scale developed by Shaver et al. [82]. After that, the negative cognitions score was submitted as one 
of the components in psychological reactance measure. Cronbach’s α = 0.86



1084	 International Journal of Social Robotics (2020) 12:1075–1092

1 3

measured observed variables represent the latent variables 
[86]. The analysis included measuring Average Variance 
Extracted (AVE), reliability (Cronbach’s α), Composite 

Reliability (CR), Discriminant Validity (DV), and collin-
earity [87].

3.2.1.1  Average Variance Extracted (AVE)  AVE reflects 
the number of observed variables correlated with their 
respective latent variables due to measurement errors [88]. 
In observing the convergent validities, the AVE for each 
latent variable, which is the mean of factor loading square, 
should be bigger than 0.50 (AVE > 0.50) [83, 89]. Results 
showed that the AVE for all latent variables was higher 
than 0.50. Thus, convergent validity was established.

3.2.1.2  Reliability  We conducted reliability analysis by 
observing the internal consistency values (known as Cron-
bach’s α) and the overall reliability of the latent variables 
by assessing the standardised loading, error variance, and 
R2 values of each observed variable [88–90]. The values 
for both Cronbach’s α and CR should be equal to or greater 

a 7-point Likert scale, ranging from completely disagree (1) to completely agree (7)
b 5-point Likert scale, ranging from completely disagree (1) to completely agree (5)
c Open-ended question
d Behavioural observation

Table 1   (continued)

Likinga

 This robotic advisor was…
 Like1. approachable
 Like2. confident
 Like3. likable
 Like4. trustworthy
 Like5. interesting
 Like6. friendly
 Like7. sincere
 Like8. warm
 Like9. competent
 Like10. informed
 Like11. credible
 Like12. modest
 Like13. honest
 Sources All Like items were adapted from a study by Verberne et al. [83] on measuring liking towards an artificial social agent as an interaction 

partner, also from Guadagno and Cialdini [84] on the partner trait rating. Cronbach’s α = 0.88
Beliefsa

 Bel1. This robotic advisor behaves in an ethical manner
 Bel2. I am confident of the intentions, actions, and outputs of this robotic advisor
 Bel3. I am not wary of this robotic advisor
 Bel4. I am confident with this robotic advisor
 Bel5. I will trust this robotic advisor if it gives me advice again in the future
 Bel6. I trust that this robotic advisor can provide me with the best advice
 Bel7. I will follow the advice that this robotic advisor gives me
 Sources Bel1 to Bel4 were adapted from a study by Jian et al. [85]; Bel4 to Bel7 were adapted from studies by Heerink et al. [86] and Tay et al. 

[87]. Cronbach’s α = 0.89
Complianced

  The compliance score is calculated by how many times participants comply with the advice given by the persuasive robot [19]. For instance, if a 
particular participant follows the advice given by the persuasive robot to donate the €1 to certain charity organizations in three specific tasks in our 
experiment while making their own decisions by ignoring the advice in two other tasks, then the participant would be granted Compliance score of 3

Table 2   Descriptive statistics

Construct M SD Skewness Kurtosis

Reactance 1.02 0.56 3.62 0.37
Beliefs 4.31 1.12 0.01 − 0.46
Compliance 3.12 1.07 − 0.30 − 1.23
Liking 4.92 0.76 − 0.01 − 1.12
Usefulness 4.61 1.23 − 1.28 − 0.07
Ease 5.91 0.76 − 3.11 1.17
Enjoy 4.95 1.13 − 1.51 0.61
Immersion 4.07 0.80 − 4.09 4.09
Attitude 5.01 1.26 − 2.19 0.19
Intentions 4.71 1.49 − 1.72 − 0.99



1085International Journal of Social Robotics (2020) 12:1075–1092	

1 3

than 0.70 to be considered as adequate [89, 91]. Without 
eliminating any observed variables, the Cronbach’s α and 
CR for all latent variables were above 0.70.

3.2.1.3  Discriminant Validity  We used discriminant validity 
as an indicator to ensure that all latent variables are inde-
pendent of one another [92]. That is, the factorial loads of 
the observed variables for a latent variable must be greater 
than to the other latent variables [88]. According to Fornell–
Larcker Criterion [89], the convergent validity of the meas-
urement model can be assessed by the AVE and CR. Apply-
ing this criterion, we confirmed the discriminant validity of 
our data.

3.2.1.4  Collinearity Statistics (VIF)  Collinearity of the latent 
variables was observed by using variance inflation factors 
(VIF). Ringle et  al. (2015) [81] stated that the maximum 
value of VIF should be ‘5.00’ in avoiding multicollinearity 
issues. VIF for our data showed excellent results, presenting 
in all cases values lower than 2.00.

3.2.2 � Evaluation of the TAM Model

The acceptance of persuasive robots using TAM was tested 
by examining the significance level (t test) [93] using boot-
strapping [94] with 1000 subsamples (recommended by Hair 
et al. [95]). f2 (Cohen’s Indicator) value was used to reflect 
the effect size of each predictor in explaining the predicted 
variable [96]. Hair et al. [95] suggested that Cohen’s effect 

size values of 0.02, 0.15, and 0.35 are considered as small, 
medium, and large effect, respectively.

In our results, we found that medium effect on Ease in 
predicting Attitude (f2 = 0.21) and Usefulness (f2 = 0.220), 
and Enjoy in predicting Ease (f2 = 0.30). Results also 
showed a large effect of Attitude in predicting Intentions 
(f2 = 1.36) and Usefulness in predicting Attitude (f2 = 0.43). 
Results presented in Fig. 3 show that almost all paths 
(except for the prediction of Intentions by Usefulness) 
were statistically significant. The path coefficient for each 
prediction was also observed in this analysis.

For a global view of the TAM, results demonstrated a 
satisfactory R2 of 0.52 for Attitude, and high R2 of 0.73 
for Intentions [42].

Based on the insignificant path of Usefulness in pre-
dicting Intentions, no effect (f2 = 0.02) was found on the 
mentioned latent variables. We used regression analysis to 
investigate whether Attitude mediates the effect of Useful-
ness on Intentions. First, this analysis showed that Useful-
ness was a significant predictor of Intentions (B = 0.68, 
SD = 0.96), t = 6.24, F(1, 76) = 38.93 (path c). Second, 
we checked for a positive relationship between Useful-
ness and Attitude. Results confirmed that Usefulness was 
a significant predictor of Attitude (B = 0.62, SD = 0.80), 
t = 6.92, F(1, 76) = 47.90 (path a). Third, we checked 
whether the suspected mediator (Attitude) affect the out-
come (Intentions). Indeed, Attitude was a significant pre-
dictor of Intentions (B = 0.85, SD = 0.63), t = 13.86, F(1, 
76) = 191.99 (path b). Finally, this analysis showed the 

Fig. 3   SEM using TAM. 
Dashed line indicates the insig-
nificant path. Path coefficients 
are reported
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effect of Usefulness on Intentions became non-significant 
when taking into account Attitude in the regression analy-
sis (B = 0.09, SD = 0.80), t = 1.17, F(2, 75) = 97.14 (path 
c’). These results supported the hypothesis that Attitude 
was a full mediator of the relationship between the Useful-
ness and Intentions.

3.3 � Objective 2

The second goal of this study was to describe the accept-
ance of persuasive robots using a proposed model called 
Persuasive Robots Acceptance Model (PRAM), by incor-
porating the technology acceptance models (original TAM 
[20] and TAM3 [23]) and social responses factors. The 
PRAM consisted of ten latent variables. Latent variables 
that stemmed from the TAM as Usefulness, Ease, Enjoy, 
Attitude and Intentions. We added four latent variables rep-
resenting social responses (Beliefs, Compliance, Reactance, 
and Liking) in the PRAM.

3.3.1 � Psychometric Properties of the PRAM

Similar steps as in the earlier section were taken in running 
the confirmatory factor analysis.

3.3.1.1  Average Variance Extracted (AVE)  Almost all latent 
variables, except Liking, presented AVE higher than 0.50. To 
ensure convergent validity, two observed variables of Liking 
which have factorial loads less than 0.50 were removed from 
the analysis (confident and informed). As results, AVE for 
Liking increased to 0.48, but still, the construct did not con-
verge with a satisfactory range. The elimination of two more 
Liking observed variables (interesting and competent) with 
the factorial loads less than 0.60 permitted AVE to increase 
to 0.54. All AVE showed satisfactory results, presenting in 
all latent variables higher than 0.50.

3.3.1.2  Reliability  The consistency values of all latent vari-
ables (Cronbach’s α) ranging from 0.72 to 0.94 were satis-
factory (above 0.70 thresholds). Results indicated that com-
posite reliability was not an issue.

3.3.1.3  Discriminant Validity (DV)  By using Fornell–
Larcker Criterion [89], it could be observed that the cor-
relation of Beliefs’ observed variables was higher for Liking 
than Beliefs. Thus, two observed variables for Liking (inter-
esting and honest) that have the smallest differences in fac-
torial crossed loads were taken out from the analysis, thus 
confirming discriminant validity.

3.3.1.4  Collinearity Statistics (VIF)  The PRAM did not have 
any multicollinearity issue, while the inner VIF ranged from 
1.00 to 3.20.

3.3.2 � Evaluation of the PRAM

Similar to the earlier model testing, the hypotheses for 
the PRAM were tested by examining the path coefficients 
and the significance level (t test) of the model [93] using 
bootstrapping [94] with 1000 subsamples (recommended 
by Hair et al. [95]). Results demonstrated that Compli-
ance had no effect in predicting Attitude, Reactance had 
no effect in predicting Attitude, and Usefulness had no 
effect in predicting Intentions (from original TAM) with f2 
smaller than 0.02. Other predictors had significant effects 
in predicting the respective predicted variables.

To design the final version of the PRAM for the accept-
ance of persuasive robots, the insignificant paths from the 
hypothesis testing were eliminated one-by-one, starting 
with the path that had no effect size. At the same time, the 
changes of p values for other paths were observed after 
each path elimination. The insignificant paths from the 
TAM [20, 21] (as shown in Fig. 3) were retained in the 
final model to preserve the prediction by the original TAM 
[20, 21]. As results, only three paths from the hypothesis 
for social responses prediction were removed: prediction 
of Attitude by Compliance (H1a), prediction of Inten-
tions by Compliance (H1b), and prediction of Attitude by 
Reactance (H4). The rest of the paths were statistically 
significant.

Predictions based on TAM showed that Usefulness 
was a predictor for Attitude (f2= 0.08) with small effect 
size but not a predictor for Intentions (f2= 0.00). Whereas 
with small effect, Ease was a predictor for Usefulness 
(f2= 0.06), Ease was predicted by Attitude (f2= 0.10) 
and Enjoy predicted Ease with medium effect (f2= 0.27). 
Importantly, Attitude had a large effect on predicting Inten-
tions (f2= 0.75).

Hypothesis 1 was rejected. That is, Attitude (f2= 0.00) 
and Intentions (f2= 0.01) were not predicted by Compli-
ance. Reactance (f2= 0.09), Usefulness (f2= 1.12), Attitude 
(f2= 0.02) and Compliance (f2= 0.19) were significantly 
determined by Beliefs, therefore Hypothesis 2 was accepted. 
Importantly, Beliefs had a large effect on predicting Use-
fulness, a medium effect in predicting Compliance, and a 
small effect in predicting Reactance and Attitude. Hypoth-
esis 3 predicted that higher Liking causes higher Beliefs and 
Intentions, which causes lower Reactance. All significant 
paths confirmed this hypothesis, and Liking had a large 
effect on predicting Beliefs (f2= 1.26) and a small effect on 
other predictions (f2= 0.07 for Intentions and f2= 0.03 for 
Reactance). Hypothesis 4 was rejected, in which Reactance 
was not a predictor for Attitude (f2= 0.01). Hypothesis 5 was 
accepted with Ease predicting Liking with medium effect 
size (f2= 0.15). Hypothesis 6 was accepted. That is, Enjoy 
was a predictor for Liking (f2= 0.20), Attitude (f2= 0.15) and 
Intentions (f2= 0.03) with small effect size.
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We also observed the path coefficient for each predic-
tion in this analysis (refer to Fig. 4). More importantly, the 
PRAM illustrated the increment of R2 values for Attitude 
and Intentions compared to the earlier TAM (model without 
the social responses shown in Fig. 3). That is, a large R2 for 
Attitude (0.61) and a large R2 for Intentions (0.76) [42].

3.4 � Objective 3

This study aimed to test whether the social responses add 
predictive power to the TAM specifically for the persuasive 
robot. Using the same method as in [97], we compared the 
R2 for Attitude and Intention from TAM (presented in Objec-
tive 1) and PRAM (inclusion of social responses presented 
in Objective 2) by calculating the F-ratio and its signifi-
cance. Results of these analyses confirmed that adding social 
responses as determinants to TAM significantly increased 
the predictive power in explaining the acceptance of the per-
suasive robot (demonstrated by PRAM).

In evaluating the goodness of fit for partial least square 
(PLS) method for SEM, Henseler and Sarstedt [93] claimed 
that global goodness of fit for PLS proposed by Tenenhaus 
et al. [98] did not represent a fit measure. Later on, Hair 
et al. [95] highlighted that there was no global goodness of 
fit in PLS. Thus, in this paper, we chose R2 (also known as 
the coefficient of determination) value as the model’s pre-
dictive in judging the quality of the PRAM [93]. The R2 for 
each endogenous variable was evaluated since it reflects the 
fitness of the model in the context of regression analysis. If 
the model fits the data 100%, or in other words, the model 
explains all of the variations in the endogenous variable, 
then the R2 for such variable is equal to 1.00. The R2 value 
was used in the earlier study [99] especially in human–robot 
interaction applications [97, 100] as a model-fit measure 
[101]. According to Cohen [96], R2 of 0.02, 0.13 and 0.26 
are considered as small, medium and large effects respec-
tively in the field of social and behavioural science.

As results, the R2 for Attitude and Intentions increased with 
the inclusion of social responses based on the observation of 

Fig. 4   Final PRAM: integration of technology acceptance model 
(TAM) and social responses. Notes Blue lines indicate the prediction 
from original TAM [13] and TAM 3 [10]. Black lines indicate the 

prediction for the hypotheses. Dashed lines indicate the insignificant 
paths. Path coefficients are reported
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overall prediction using SmartPLS. That is 9.1% increment 
of R2 for Attitude (TAM: 0.52 and PRAM: 0.61). Also, the 
inclusion of social responses in the PRAM (R2 of 0.76) com-
pared to the TAM (R2 of 0.73) resulting in the increment of 
2.8% explains the variance for Intentions. To examine the 
significances of the R2′s increments, we conducted hierarchi-
cal multiple regressions using SPSS since SmartPLS does not 
offer such a test. Hierarchical multiple regression analysis 
is a framework for model comparison rather than a statisti-
cal method. This analysis is effective in comparing multiple 
regression models by evaluating the changes in R2 and its 
significance. It determines whether the increment (or decre-
ment) of R2 value for the dependent variable (e.g., Attitude) is 
statistically significant after including a new set of independ-
ent variables (we called it model 2) into the original set of 
independent variables (we called it model 1) [102, 103]. This 
analysis was conducted in earlier research by extending TAM 
[20] with the evaluation of robot characteristics in predicting 
robot acceptance [104] and extending TRA [63] with a key 
determinant from TPB [105] in determining the intention to 
work with a social robot [106].

To compare the changes of Attitude from TAM and 
PRAM, we ran hierarchical multiple regression with Attitude 
as dependent variable, Usefulness, and Ease as independ-
ent variables for the first model (based on TAM) besides 
Beliefs and Enjoy as additional independent variables for the 
second model (based on PRAM). Results demonstrated that 
the addition of Beliefs and Enjoy (model 2) led to a statisti-
cally significant increment in R2 of 9.5%, F(2, 73) = 8.02, 
p < 0.001. The full model of Usefulness, Ease, Beliefs 
and Enjoy to predict Attitude was statistically significant, 
R2 = 0.58, F(4, 73) = 25.18, p < 0.001.

We ran another hierarchical multiple regression to deter-
mine if the addition of Enjoy and Liking improved the pre-
diction of Intentions (model 2) over and above Attitude 
and Usefulness alone (model 1). As results, the addition of 
Enjoy and Liking to the prediction of Intentions (model 2) 
led to a statistically significant increment in R2 of 2.9%, F(2, 
73) = 4.20, p < 0.05. The full model of Enjoy, Liking, Atti-
tude and Usefulness to predict Intentions was statistically 
significant, R2 = 0.75, F(4, 73) = 54.81, p < 0.001.

In summary, these hierarchical multiple regressions dem-
onstrated clearly that social responses, Beliefs in predicting 
Attitude and Liking in predicating Intentions, enhanced the 
predictive power in explaining the acceptance of persuasive 
robot as demonstrated by PRAM.

4 � Discussion

This work enriches the body of research on TAM from the 
standpoint of social robotic user acceptance field to ensure 
that people are willing to interact with and accept to use 

these robots in everyday life. The first goal of the study was 
to empirically test the TAM in explaining the acceptance of 
persuasive robots. To achieve this goal, we employed five 
latent variables which originated from original TAM [20]) 
and TAM 3 [23] namely perceived usefulness, perceived 
ease of use, perceived enjoyment, attitude towards using and 
behavioural intentions. Based on self-reported measures, our 
results suggested that TAM demonstrates good predictive 
powers in understanding the acceptance of persuasive robots 
with satisfactory and high R2 for attitude towards using and 
behavioural intentions [42]. Earlier research showed compa-
rable R2 values for attitude towards using (R2 = 0.61 [107]) 
and for behavioural intentions (R2 = 0.63 [108], R2 = 0.53 
[107]) in measuring the acceptance of social robots in sepa-
rate studies. Among the constructs, perceived usefulness was 
the strongest predictor of attitude towards using (stronger 
than perceived ease of use) [109] whereas attitude towards 
using was the only predictor of behavioural intentions. 
While some of the earlier works in social robotics found a 
significant predictor of perceived usefulness on behavioural 
intentions [39, 42], our results showed that perceived use-
fulness had no direct causal effect in predicting behavioural 
intentions. Further analysis reported that attitude towards 
using was a full mediator between perceived usefulness and 
behavioural intentions, similarly as expected in the origi-
nal conceptualisation of TAM [110]. This phenomenon 
might be due to a large effect of attitude towards predicting 
behaviour intentions, which in return diminished the power 
of perceived usefulness in predicting behaviour intentions. 
Mediation in TAM constructs was commonly found in ear-
lier studies [111, 112] (e.g., [112] showed that beliefs about 
ease of use were a full mediator of the relationship between 
the level of education and beliefs about usefulness). Applied 
to our study, the mediation analysis reflects that when people 
perceived the persuasive robot as a useful advisor in select-
ing the charity organisations, they would have a favourable 
attitude towards using the robot, which in turn influences 
them to use the robot again in the future.

The evaluation of social responses towards the persua-
sive robot using questionnaire demonstrates a promising 
result for a better understanding of the acceptance of per-
suasive robots. By extending the TAM constructs used in 
the first objective, we expected to increase the power of the 
acceptance model by adding social responses in the PRAM 
(second objective). The social responses include trusting 
behaviour, trusting beliefs, psychological reactance and 
liking. As expected, trusting beliefs and liking fitted in the 
PRAM by its contribution to the increment of R2 for attitude 
towards using and behavioural intentions correspondingly. 
Earlier research pointed out the role of trust in enhancing 
user’s acceptance and intention to use for technologies in 
general [65, 66], and social robots in particular [113, 114]. 
Importantly, trusting beliefs was the strongest predictor of 
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perceived usefulness. People who believe the robot will find 
it a useful advisor in selecting the best charity organisations 
for the donation task.

Additionally, Cialdini [70] highlighted that liking is one 
of the weapons in the principle of persuasion. As a part 
of intrinsic motivation suggested by Cognitive Evaluation 
Theory [68], liking can be increased by interacting with 
someone that pays us compliments and have some similar-
ity to us [115]. Since the persuasive robot in this study used 
social cues that people like (as identified by previous research 
[14]), it helps to increase the persuasive power of the robot in 
persuading people to experience less reactance towards the 
persuasive attempts. Indirectly, liking added predictive power 
in explaining the behavioural intentions to use the robot in 
case the participants have access to the robotic advisor again.

On the other hand, compliance did not determine the atti-
tude towards using or behavioural intentions in using the per-
suasive robot again in the future. This result was in line with 
earlier research [21, 23] which associated compliance with 
social influences, and which found no evidence that higher 
compliance led to higher attitude towards using the technol-
ogy [116]. This finding may be due to the task designed in this 
experiment. We asked the participants to donate the money 
to ambiguous charity organisations, which caused them to 
comply with the advice given by the robot although they had 
low favourable attitudes towards using the robot. Similar to 
compliance, psychological reactance also was not a predic-
tor for attitude towards using the robot, even though psycho-
logical reactance was predicted by liking and trusting beliefs. 
The likeable social cues implemented on the persuasive robot 
could be the reason why the psychological reactance score 
was low. In this study, psychological reactance was skewed on 
the right side (positive skewness) with a very low mean value, 
M = 1.02 (neutral = 3). It indicates that the persuasive attempts 
in this experiment did not trigger any significant feelings of 
anger and negative cognitions towards the robot.

One of the most important results from this study was 
the significant increments of attitude towards using and 
behavioural intentions constructs by the inclusion of social 
responses, particularly trusting beliefs and liking in the 
PRAM. By including perceived enjoyment and trusting beliefs 
as predictors of attitude towards using, the coefficient of deter-
mination for attitude towards using increased by 9.1% in the 
overall PRAM compared to the TAM. Whereas, the additional 
prediction by perceived enjoyment and liking increased the 
coefficient of determination for behavioural intentions by 
2.8% in the overall PRAM compared to the TAM.

4.1 � Limitations and Future Work

This study provides insights into the significant role of 
social responses for the prediction of persuasive robots’ 

acceptance through PRAM. In line with earlier research 
[65, 114], our model suggests that trusting beliefs should 
be a factor that predicts acceptance in any case where social 
interaction plays a role. However, we could not fully validate 
the model we proposed, since the experimental task in our 
study did not lead to sufficient variation on compliance and 
psychological reactance among participants. Replicating our 
design on the acceptance model when participants would 
perform an experimental task that can evoke variation levels 
of compliance and psychological reactance would increase 
the confidence in this model. This improvement might be 
made by changing the task used in this study; for example, 
instead of using ambiguous names for the charity organisa-
tions as in the current study, future study might use clear, 
real names of the charity organisations. We expect that if the 
participants have clear information about the organisations 
to be donated to, they will have their stances to donate to 
which charity, and it may vary the compliance and reactance 
scores. Other than that, the experimental design and ques-
tionnaire measures employed in this study might be limited 
to study causal effects. Changing the experimental design 
and using some control checks (for example, adding some 
questions as manipulation checks and covariates) might 
help to avoid uncontrolled influences of the latent variables. 
Further research may also consider enhancing PRAM by 
including other social responses like engagement and social 
attraction.
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