1.56 μm and 1.93 μm synchronized mode-locked fiber laser with graphene saturable absorber

By: Lau, KY (Lau, K. Y.)[1]; Zulkifli, MZ (Zulkifli, M. Z.)[2]

INFRARED PHYSICS & TECHNOLOGY
Volume: 112
Article Number: 103606
DOI: 10.1016/j.infrared.2020.103606
Published: JAN 2021
Document Type: Article
View Journal Impact

Abstract
Ultrafast pulse with short duration ranging from picosecond to femtosecond has extensive industrial and scientific applications. The laser cavity generates this ultrafast pulse, however, was typically designed to emit the light at wavebands such as at approximately 1.5-1.6 μm or 1.9-2.0 μm. This could be limited by the bandgap of certain saturable absorber material to conduct ultra-broadband laser emission. Graphene, a 2D material with gapless band structure contributes to the optical resonant excitation to emit at any wavelength. The graphene was employed as the saturable absorber and positioned in a laser cavity consisting of both erbium and thulium-doped fiber laser. A synchronized mode-locked fiber laser was generated at a centre wavelength of 1563.5 nm and 1931.9 nm, giving a pulse duration of 700 fs and 1.77 ps at a constant pulse repetition rate of 12.905 MHz. The success of this work will provide a better insight by developing the optimum utilization of a saturable absorber in generating multiple mode-locked lasers with different yet far wavelength in near-infrared red region.

Keywords
Author Keywords: Fiber laser; Graphene; Mode-locking; Saturable absorber; Ultrafast pulse

Author Information
Reprint Address:
Aalto University Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland.
Corresponding Address: Lau, KY (corresponding author)
Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland.

Addresses:
[2] Int Islamic Univ Malaysia, Dept Phys, Kulliyyah Sci, Ctr Adv Optoelect Res CAPTOR, Kuantan 25200, Pahang Darul Ma, Malaysia

Organization-Enhanced Name(s)
International Islamic University Malaysia

E-mail Addresses: Lau.kuenyao@aalto.fi

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Education of Malaysia</td>
<td>FP044-2014A</td>
</tr>
<tr>
<td></td>
<td>UM.C/625/1/HIR/MoHE/SC/29/01</td>
</tr>
</tbody>
</table>

View funding text

Publisher
ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS

Journal Information
Impact Factor: Journal Citation Reports
Cited References: 21
Showing 21 of 21 View All in Cited References page

1. Why nanotubes grow chiral
By: Artyukhov, Vasiliii I.; Penev, Evgeni S.; Yakobson, Boris I.
NATURE COMMUNICATIONS Volume: 5 Article Number: 4892 Published: SEP 2014
Times Cited: 100

2. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers
By: Bao, Qiao-liang; Zhang, Han; Wang, Yu; et al.
ADVANCED FUNCTIONAL MATERIALS Volume: 19 Issue: 19 Pages: 3077-3083 Published: OCT 9 2009
Times Cited: 1,736

3. Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers
By: Boguslawski, Jakub; Sotier, Jarosław; Soboń, Grzegorz; et al.
PHOTONICS RESEARCH Volume: 3 Issue: 4 Pages: 119-124 Published: AUG 1 2015
Times Cited: 55

4. Optical constants of graphene layers in the visible range
By: Bruna, M.; Borini, S.
APPLIED PHYSICS LETTERS Volume: 94 Issue: 3 Article Number: 031901 Published: JAN 19 2009
Times Cited: 396

5. Custom fabrication and mode-locked operation of a femtosecond fiber laser for multiphoton microscopy
By: Davoudzadeh, N.; Ducourthial, G.; Spring, B. Q.
Times Cited: 1

6. Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 µm
By: Fu, Bo; Hua, Yi; Xiao, Xiaosheng; et al.
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS Volume: 20 Issue: 5 Article Number: 110705 Published: SEP-OCT 2014
Times Cited: 101

7. Femtosecond laser micromachining in transparent materials
By: Gatass, Rafael R.; Mazur, Eric
NATURE PHOTONICS Volume: 2 Issue: 4 Pages: 219-225 Published: APR 2008
Times Cited: 1,921

8. Fiber Lasers The 2 μm Market Heats Up
By: Geng, Ji-heng; Jiang, Shbin
OPTICS & PHOTONICS NEWS Volume: 25 Issue: 7-8 Pages: 34-41 Published: JUL-AUG 2014
Times Cited: 57

9. Nonlinear optical response of graphene in time domain
By: Ishikawa, Kenichi L.
PHYSICAL REVIEW B Volume: 82 Issue: 20 Article Number: 201402 Published: NOV 4 2010
Times Cited: 171

10. Passively synchronized Q-switched and mode-locked dual-band Tm: ZBLAN fiber lasers using a common graphene saturable absorber
By: Jia, C.; Shaxtri, B.J.; Abdulkribbon, N.; et al.
Times Cited: 1
(Show additional data)

11. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymer methyl-methacrylate saturable absorber
By: Lau, K. Y.; Abu Bakar, M. H.; Muhammad, F. D.; et al.
OPTICS EXPRESS Volume: 26 Issue: 10 Pages: 12790-12800 Published: MAY 14 2018
Times Cited: 14

12. Broadband Saturable Absorption of Graphene Oxide Thin Film and Its Application in Pulsed Fiber Lasers
By: Li, Xiaohui; Tang, Yulong; Yan, Zhiyu; et al.
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS Volume: 20 Issue: 5 Article Number: 1101107 Published: SEP-OCT 2014
Times Cited: 50

13. Progress of medical lasers: fundamentals and applications
By: [List of authors]
Times Cited: 4
14. Line of Dirac Nodes in Hyperhoneycomb Lattices  
By: Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T.  
PHYSICAL REVIEW LETTERS Volume: 115 Issue: 2 Article Number: 026403 Published: JUL 9 2015  
Times Cited: 211

15. Single-Walled Carbon Nanotubes  
By: Nanot, Sebastien; Thompson, Nicholas A.; Kim, Ji-Hee; et al.  
SPRINGER HANDBOOK OF NANOMATERIALS Pages: 105-146 Published: 2013  
Times Cited: 14

16. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication  
By: Oudej, Hassan M.; Duran, Jose R.; Janja, Bilal; et al.  
OPTICS EXPRESS Volume: 23 Issue: 18 Pages: 23302-23309 Published: SEP 7 2015  
Times Cited: 157

17. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers  
By: Sebon, Grzegorz; Sator, Jaroslaw; Pasternak, Iwona; et al.  
OPTICAL MATERIALS EXPRESS Volume: 5 Issue: 12 Pages: 2884-2894 Published: DEC 1 2015  
Times Cited: 55

18. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber  
By: Sator, Jaroslaw; Sebon, Grzegorz; Tarka, Jan; et al.  
OPTICS EXPRESS Volume: 22 Issue: 5 Pages: S536-S543 Published: MAR 10 2014  
Times Cited: 53

19. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers  
By: Yamashita, S; Inoue, Y; Maruyama, S; et al.  
OPTICS LETTERS Volume: 29 Issue: 14 Pages: 1581-1583 Published: JUL 15 2004  
Times Cited: 330

20. 860 femtoseconds mode-locked fiber laser by Gallium co-doped erbium fiber (Ga-EDF)  
By: Zazali, N. A.; Latif, A. A.; Lau, K. Y.; et al.  
RESULTS IN PHYSICS Volume: 15 Article Number: 102644 Published: DEC 2019  
Times Cited: 2

21. Theory of high-order harmonic generation for gapless graphene  
By: Zurron, Oscar; Picon, Antonio; Plaja, Luis  
NEW JOURNAL OF PHYSICS Volume: 20 Article Number: 053033 Published: MAY 11 2018  
Times Cited: 14

Showing 21 of 21  View All in Cited References page