Web of Science InCites Journal Citation Reports Essential Science Indicators EndNote Publons Kopernio Master Journal List Sign In 🔻 Help 🔻 English 🔻

Web of Science

Search Search Results Tools ▼ Searches and alerts ▼ Search History Marked List

Full Text from Publisher

☐→ Export...

Add to Marked List

◀ 103 of 127 ▶

1.56 mu m and 1.93 mu m synchronized mode-locked fiber laser with graphene saturable absorber

By: Lau, KY (Lau, K. Y.)[1]; Zulkifli, MZ (Zulkifli, M. Z.)[2]

INFRARED PHYSICS & TECHNOLOGY

Volume: 112

Article Number: 103606

DOI: 10.1016/j.infrared.2020.103606

Published: JAN 2021 Document Type: Article View Journal Impact

Abstract

Ultrafast pulse with short duration ranging from picosecond to femtosecond has extensive industrial and scientific applications. The laser cavity generates this ultrafast pulse, however, was typically designed to emit the light at wavebands such as at approximately 1.5-1.6 mu m or 1.9-2.0 mu m. This could be limited by the bandgap of certain saturable absorber material to conduct ultra-broadband laser emission. Graphene, a 2D material with gapless band structure contributes to the optical resonant excitation to emit at any wavelength. The graphene was employed as the saturable absorber and positioned in a laser cavity consisting of both erbium and thulium-doped fiber laser. A synchronized mode-locked fiber laser was generated at a centre wavelength of 1563.5 nm and 1931.9 nm, giving a pulse duration of 700 fs and 1.77 ps at a constant pulse repetition rate of 12.905 MHz. The success of this work will provide a better insight by developing the optimum utilization of a saturable absorber in generating multiple mode-locked lasers with different yet far wavelength in near-infrared red region.

Keywords

Author Keywords: Fiber laser; Graphene; Mode-locking; Saturable absorber; Ultrafast pulse

KeyWords Plus: ERBIUM

Author Information

Reprint Address:

Aalto University Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland.

Corresponding Address: Lau, KY (corresponding author)

+ Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland.

Addresses:

🛨 [1] Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland

[2] Int Islamic Univ Malaysia, Dept Phys, Kulliyyah Sci, Ctr Adv Optoelect Res CAPTOR, Kuantan 25200, Pahang Darul Ma, Malaysia

Organization-Enhanced Name(s)

International Islamic University Malaysia

E-mail Addresses: Lau.kuenyao@aalto.fi

Funding

Funding Agency	Grant Number
Ministry of Education of Malaysia	FP044-2014A UM.C/625/1/HIR/MoHE/SC/29/01

View funding text

Publisher

ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS

Journal Information

Impact Factor: Journal Citation Reports

Web of Science Usage Count 3 Last 180 Days Since 2013 Learn more

This record is from: Web of Science Core Collection - Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

Categories / Classification

Research Areas: Instruments & Instrumentation; Optics; Physics

Web of Science Categories: Instruments & Instrumentation; Optics; Physics, Applied

See more data fields

◀ 103 of 127 ▶

Cited References: 21

Showing 21 of 21 View All in Cited References page

(from Web of Science Core Collection)

Times Cited: 100

Times Cited: 1,736

Times Cited: 55

Times Cited: 396

Times Cited: 1

Times Cited: 101

Times Cited: 1,921

Times Cited: 57

Times Cited: 171

1. Why nanotubes grow chiral

By: Artyukhov, Vasilii I.; Penev, Evgeni S.; Yakobson, Boris I.

NATURE COMMUNICATIONS Volume: 5 Article Number: 4892 Published: SEP 2014

Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers

By: Bao, Qiaoliang; Zhang, Han; Wang, Yu; et al.

ADVANCED FUNCTIONAL MATERIALS Volume: 19 Issue: 19 Pages: 3077-3083 Published: OCT 9 2009

3. Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers

By: Boguslawski, Jakub; Sotor, Jaroslaw; Sobon, Grzegorz; et al.

PHOTONICS RESEARCH Volume: 3 Issue: 4 Pages: 119-124 Published: AUG 1 2015

4. Optical constants of graphene layers in the visible range

By: Bruna, M.; Borini, S.

APPLIED PHYSICS LETTERS Volume: 94 Issue: 3 Article Number: 031901 Published: JAN 19 2009

5. Custom fabrication and mode-locked operation of a femtosecond fiber laser for multiphoton microscopy

By: Davoudzadeh, N.; Ducourthial, G.; Spring, B.Q.

Sci. Rep. Volume: 9 Issue: 1 Pages: 1-12 Published: 2019

6. Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 mu m

By: Fu, Bo; Hua, Yi; Xiao, Xiaosheng; et al.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS Volume: 20 Issue: 5 Article Number: 1100705 Published: SEP-OCT 2014

7. Femtosecond laser micromachining in transparent materials

By: Gattass, Rafael R.; Mazur, Eric

NATURE PHOTONICS Volume: 2 Issue: 4 Pages: 219-225 Published: APR 2008

8. Fiber Lasers The 2 mu m Market Heats Up

By: Geng, Jihong; Jiang, Shibin

OPTICS & PHOTONICS NEWS Volume: 25 Issue: 7-8 Pages: 34-41 Published: JUL-AUG 2014

9. Nonlinear optical response of graphene in time domain

By: Ishikawa, Kenichi L.

PHYSICAL REVIEW B Volume: 82 Issue: 20 Article Number: 201402 Published: NOV 4 2010

10. Passively synchronized Q-switched and mode-locked dual-band Tm 3+: ZBLAN fiber lasers using a common graphene saturable Times Cited: 1 absorber

By: Jia, C.; Shastri, B.J.; Abdukerim, N.; et al.

Sci. Rep. Volume: 6 Issue: 1 Pages: 1-9 Published: 2016

[Show additional data]

11. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber Times Cited: 14

By: Lau, K. Y.; Abu Bakar, M. H.; Muhammad, F. D.; et al.

OPTICS EXPRESS Volume: 26 Issue: 10 Pages: 12790-12800 Published: MAY 14 2018

12. Broadband Saturable Absorption of Graphene Oxide Thin Film and Its Application in Pulsed Fiber Lasers

By: Li, Xiaohui; Tang, Yulong; Yan, Zhiyu; et al.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS Volume: 20 Issue: 5 Article Number: 1101107 Published: SEP-OCT 2014

13. Progress of medical lasers: fundamentals and applications

Times Cited: 4

Times Cited: 50

By: Lin, J.-T.

Medical Devices and Diagnostic Engineering Volume: 1 Issue: 2 Pages: 36-41 Published: 2016

14. Line of Dirac Nodes in Hyperhoneycomb Lattices

Times Cited: 211

By: Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T.

PHYSICAL REVIEW LETTERS Volume: 115 Issue: 2 Article Number: 026403 Published: JUL 9 2015

15. Single-Walled Carbon Nanotubes

Times Cited: 14

By: Nanot, Sebastien; Thompson, Nicholas A.; Kim, Ji-Hee; et al.

SPRINGER HANDBOOK OF NANOMATERIALS Pages: 105-146 Published: 2013

· ·

16. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

Times Cited: 157

By: Oubei, Hassan M.; Duran, Jose R.; Janjua, Bilal; et al.

OPTICS EXPRESS Volume: 23 Issue: 18 Pages: 23302-23309 Published: SEP 7 2015

17. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers Times Cited: 55

By: Sobon, Grzegorz; Sotor, Jaroslaw; Pasternak, Iwona; et al.

OPTICAL MATERIALS EXPRESS Volume: 5 Issue: 12 Pages: 2884-2894 Published: DEC 1 2015

18. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable Times Cited: 53

absorber

By: Sotor, Jaroslaw; Sobon, Grzegorz; Tarka, Jan; et al.

OPTICS EXPRESS Volume: 22 Issue: 5 Pages: 5536-5543 Published: MAR 10 2014

19. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to Times Cited: 330

mode-locked fiber lasers

By: Yamashita, S; Inoue, Y; Maruyama, S; et al.

OPTICS LETTERS Volume: 29 Issue: 14 Pages: 1581-1583 Published: JUL 15 2004

20. 860 femtoseconds mode-locked fiber laser by Gallium co-doped erbium fiber (Ga-EDF) Times Cited: 2

By: Zazali, N. A.; Latif, A. A.; Lau, K. Y.; et al.

RESULTS IN PHYSICS Volume: 15 Article Number: 102644 Published: DEC 2019

21. Theory of high-order harmonic generation for gapless graphene Times Cited: 14

By: Zurron, Oscar; Picon, Antonio; Plaja, Luis

NEW JOURNAL OF PHYSICS Volume: 20 Article Number: 053033 Published: MAY 11 2018

Showing 21 of 21 View All in Cited References page

Clarivate Copyright notice Terms of use Privacy statement Cookie policy

Accelerating innovation

Sign up for the Web of Science newsletter

Follow us

