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Abstract: Green separation science involves extraction, pre-concentration and chromatographic
analysis aiming at minimizing environmental impact by reducing energy and reagent usage and re-
ducing or eliminating waste generation. However, the enrichment of trace analytes and/or the analy-
sis of complex matrices most frequently require several steps before analysis, such as extraction,
pre-concentration, clean up and preparative chromatography. Thus, alternative and greener separa-
tion techniques and solvents are replacing classical methods to diminish the carbon footprint and in-
crease sustainability. Moreover, many innovations are also emerging to curtail the environmental
impact of samples analysis; such as micro or nano analytical platforms, sensor-based systems and
direct injection to high-resolution mass spectrometry. The current review provides an updated ac-
count of the green and sustainable separation science techniques. The current innovations on green-
er separations and their application in different fields of study are discussed.

Keywords: Sustainable chemistry, green separation science, alternative sample preparation, micro-analytical techniques, mul-
tidimensional chromatography, green chromatography.

1. INTRODUCTION
Green chemistry has become a major trend, as evidenced

by a recent editorial in “Green Chemistry” journal [1]. The
editor stated a simple but important question to consider be-
fore branding a new method, process or reaction as “Green”:
Is the new chemistry greener than what has been done be-
fore? This question has modified the checklist in selecting a
“green  chemistry”  definition,  as  this  concern  is  no  longer
limited  only  to  the  domain  of  chemistry.  A  Web  of  Sci-
ence® search of “green chemistry” in the last five years has
resulted in 10,926 total articles (Fig. 1). In (a), the steady in-
crease in  the number of  articles  reflects  the rise  in  impor-
tance  of  this  field,  whereas  in  (b)  the  sources  of  funding
grants demonstrate the universal concern about green chemi-
cal  science.  In  (c),  the  applications  of  this  concept  are  so
widespread and so comprehensive that it has been applied in
many different fields starting from chemistry to condensed
matter physics.

Green separation science is a term that combines prepara-
tive and analytical chromatography. Different goals  are   re-
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quired to make sure that the process can be assigned  as  
green separation science [2, 3]. Some organizations and insti-
tutes have defined green chemistry in several research arti-
cles [4-6]. The main criteria are (1) the reduction of the use
of  chemical  reagents,  (2)  the minimization of  energy con-
sumption, (3) the sustainability of the management of analyt-
ical  waste,  and (4)  the  appropriate  safety  of  the  personnel
[7-9].

The most common measurement of the outcome of a se-
paration method is the recovery rate of a particular analyte
from its matrix. This recovery rate is a function of solubility
as well as the extractability of the separation solvents [7-9].
In recent years, many different types of solvents for separa-
tion have evolved, with a particular emphasis on the recov-
ery of analytes. However, the concern about the environmen-
tal  effect  of  these  organic  solvents  and  the  rise  of  green
chemistry methods sparked the development of a green sepa-
ration science subgroup that tries to ally the yield in recov-
ery rate with solvents that entail more sustainable and green-
er properties.

This current contribution has discussed the green separa-
tion science, its importance, innovation and application over
the last few years. The last part of this review provides a per-
spective on this field and the future that is projected in the se-
paration science.
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Fig. (1). Figures for 10,926 entries in Web of Science® derived from the “green chemistry” keyword: (a) the number of entries during the
last 5 years; (b) the funding sources for these studies and (c) the fields of study for this keyword in which the area size reflects the number of
publications. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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2.  GREEN CHEMISTRY IN  PREPARATIVE CHRO-
MATOGRAPHY

Most of the efforts on greener separation are in the pre-
parative field of chromatography. The preparative chroma-
tography,  as  the  name suggests,  is  the  initial  stage  for  the
analysis where the targeted analyses are separated from the
sample matrices. The global statistics for the use of organic
solvents  in  preparative  chromatography  are  not  available.
However,  a quick search in the literature shows that  these
solvents are few and not quite diverse. Even though the use
of organic solvents is more controlled in the research envi-
ronment when compared to industrial applications. However,
the use of organic solvent always puts a lot of challenges on
the  environment  [10].  A  number  of  innovative  and  newer
technologies have been introduced, and some have shown a
promising  reduction  in  the  use  of  solvents  for  preparative
chromatography (Fig .2). Supercritical fluids, ionic liquids
and  micro  extraction  are  a  few  of  those  and  will  be  dis-
cussed in the following sections for their application on sol-
vent reduction.

2.1. Supercritical Fluid
Supercritical fluids (SFs) are a category that can be used

in green separation techniques as alternative solvents. SF is
a fluid phase of any substance at a temperature and pressure
above its critical point where the distinction between liquid
and  gas  phase  does  not  exist  and  the  unique  properties  of
this fluid phase are intermediate between typical liquids and
gases  [11,  12].  The  fundamental  interest  in  SFs  arises  be-
cause of the environmental reasons and their unique SFs pos-
es lower densities and viscosities, and higher diffusivities in
comparison with the liquids. The properties of SFs can be
easily tuned by changing the temperature and pressure. The
tuning properties of a SF are an added benefit that helps the
achievement of the recovery required for a particular analy-
sis.

Carbon dioxide has been mostly used so far because of
the convenient critical temperature and pressure, low price,
noninflammability, chemical stability and nontoxicity. The
utility of a supercritical fluid in sample preparation methods
has already been well established [2]. Its application on chro-
matography as a single method or hyphenated with other ana-
lytical methods is also getting more attention [13]. One re-
cent example of the recent application of supercritical fluids
is the enhancement of chiral chromatographic separations by
eight-fold in plate counts [14].

A very recent example of SF application is the combina-
tion of SF extraction and SF chromatography online for the
extraction  and  analysis  of  hydrophilic  compounds.  This
method has been optimized to use a minimal amount of sam-
ples required for  the splitting function for  analysis.  More-
over, this process improved separation efficiency [15]. A SF
method  was  reported  to  remove  the  lipid  layer  from  the
artery of the patient and analyze it using a QTOF-MS. This
method could separate the lipid layer within seven minutes
using a Zero organic solvent [16]. There are many examples
of SF extraction that exist in the literature for the extraction

of plant metabolites [12, 17, 18], which did not use any or-
ganic solvent and can be considered as green separation ap-
proaches.

2.2. Ionic Liquids
Ionic liquids are another prominent example of green se-

paration, including extraction and chromatography [19]. The
application of ionic liquids has been well demonstrated and
established [19, 20] in separation science since their discov-
ery in 1914 [21] because of their unique solvating properties
related  to  their  polarity  and  ionic  character,  negligible
vapour pressure and high thermal stability. Ionic liquids are
organic salts with melting points equal to below 100 ˚C.

Many ionic liquids are almost ideal constituents of statio-
nary phases in gas chromatography (GC) due to their  tun-
able selectivity through structural modifications, high viscos-
ity,  and  high  thermal  stability  as  already  thoroughly  de-
scribed  [22].  These  types  of  stationary  phases  provide
unique separation for both polar and non-polar compounds
in complex mixtures since ionic liquids have dual nature be-
havior [23, 24]. Talebi and co-authors described the use of
ionic  liquids  as  stationary  phases  in  GC with  examples  in
their recently published book chapter [22]. The use of a new
generation of inert  ionic liquid GC columns has improved
the original ionic liquid stationary phase performance. An ar-
ticle published in 2018 investigated the inert ionic liquid col-
umn comprising phosphonium or imidazolium cationic spe-
cies for the separation of methyl esters of fatty acids [25].
This column set  was also compared with the conventional
ionic liquid columns (IL111, IL111i) and comprised of low
column bleeding, which makes it more suitable for multidi-
mensional GC in analyzing methyl esters of fatty acids.

Ionic  liquids  have  been  incorporated  into  high-perfor-
mance liquid chromatography (HPLC) separations, although
not only as immobilized new HPLC stationary phases but al-
so as additives to mobile phases. Many studies are using ion-
ic  liquids  as  additives  in  HPLC [26-28],  which have  been
broadly discussed by Ali and co-authors [29]. Wang et al.,
studied the separation of eleven 4,4-diamino stilbene-2,2-di-
sulfonic acid-based fluorescent whitening agents with differ-
ent numbers of sulfonic acid groups using ionic liquid as a
mobile phase additives in HPLC [30]. They also investigat-
ed the effects of ionic liquid concentration, pH and composi-
tion of the mobile phase on this separation and discerned the
better ionic liquid.

Due to their structural tunability, ionic liquids can be ap-
plied in several sample extraction methods such as liquid-
liquid  extraction  (LLE),  single-drop  microextraction  (SD-
ME),  dispersive  liquid-liquid  micro-extraction  (DLLME),
and solid-phase microextraction (SPME) [31]. Though LLE
is the most widely used extraction technique, the use of tox-
ic organic solvents limits its use. First,  LLE was modified
by replacing those organic solvents by 1-butyl-3-methylimi-
dazolium hexafluorophosphate as a novel ionic liquid extrac-
tion  solvent  for  nineteen  different  compounds,  including
acids, alcohols and bases as well as benzene  and its  deriva-
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Fig. (2). The analytical techniques that are in line with the greener and sustainable separation techniques. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).

tives [32]. DLLME was first introduced in 2006 and since
then,  it  has attracted enormous attention in separation sci-
ence.  DLLME  on  ionic  liquids  has  been  applied  to  deter-
mine organic compounds and metals in a variety of matrices
such as in water, food and biological samples; as described
in the review article by Rykowska et al.  [33].  Another re-
view by Trujillo-Rodríguez et al., summarized most of the
studies in this field conducted from 2008 to 2013 [34].

2.3. Deep Eutectic Solvents
Deep Eutectic solvents (DES) are classified as a type of

ionic liquids. Though ionic liquids are one of the most wide-
ly  studied  areas  in  separation  science  in  the  past  decade,
their high price and toxicity hampered their industrial emer-
gence. To overcome these drawbacks of ionic liquids, DESs
have emerged as a new generation of solvents that can em-
ploy  the  ionic  liquid  concept  more  rationally.  DESs  are  a
mixture  of  two  or  three  components  associated  with  each
other by hydrogen bond to form a eutectic mixture [35]. In
most cases, a quaternary ammonium salt is associated with a
metal salt or hydrogen bond donor, which are cheap and safe
components used to synthesize the DES mixture. The result-
ing mixture possesses a lower melting point than each indivi-
dual component due to charge delocalization through hydro-
gen bonding; the halide anion and hydrogen moiety are re-
sponsible for the decreasing melting point [36]. This mixture
is also characterized by a lower freezing point than that of
each individual component, which is below 150 °C for all re-
ported DESs.

In the first study of DESs, Abbott et al., (2001) heated a
range  of  quaternary  ammonium  salts  with  ZnCl2  and  ob-

served a lower freezing point and a lower melting point of
the  resulting  mixture  than  each  ammonium  salt  or  ZnCl2

alone [36]. Their study was extended and many liquids have
been used to form eutectic mixtures of ammonium salts and
hydrogen donors [37]. The applications of DESs for extract-
ing and separating target compounds are well documented
and can be found in the review articles by Smith et al., and
Zhang et al. [35, 38]. The use of DESs in the field of extract-
ing and separating target compounds is also well established
and well documented in the literature [39, 40].

One of the most important uses of DES is in biodiesel pu-
rification, where the DES can remove the residual KOH cat-
alyst and purify the crude biodiesel [41]. It can also be ap-
plied for the removal or decrease of aromatic hydrocarbons
from chemical  products  [42]  and the separation/storage of
greenhouse  gases;  CO2  and  CH4  [43].  It  also  has  usage  in
bioactive compounds extraction and separation from living
organisms, tissues or cells; which are widely known for pro-
viding beneficial effects on human health [44-46]. For exam-
ple, headspace DES microextraction prepared by mixing cho-
line chloride with ethylene glycol at different ratios extract-
ed terpenoids from Chamaecyparis obtusa leaves [47]. The
terpenoids swiftly extracted by this method showed various
anti-disease properties like antimicrobial, antitumor and anti-
malarial activities. As a green extractive solvent, Yilmaz et
al., applied choline chloride DES in an ultrasound-assisted
extraction  of  iron  from  various  animals’  liver  samples  in
2015 [48]. In 2015, DES was used to prepare DES-based sili-
ca as a stationary phase sorbent by Tang et al., [49]. By the
same token, DES was also used as a mobile phase additive
to improve separation in HPLC [50].



Strategy for Sustainable and Green Current Chromatography, 2020, Vol. 07, No. 00   5

2.4. Pressurized Hot Water Extraction
Pressurized hot  water  extraction (PHWE) is  an extrac-

tion technique based on water at a temperature range higher
than  the  boiling  point  (100οC)  and  lower  than  its  critical
point (374 οC). While extracting, moderate pressure needed
to be employed, such as 0.1 MPa for 100οC and 22.1 MPa
for  374 οC [51].  Nowadays,  PHWE has  become a  popular
green  extraction  technique  for  the  extraction  of  various
types of compounds from different types of environmental,
food and plant materials. It has also been used for the extrac-
tion and removal of organic compounds from foodstuff and
soils  to  ensure  food  safety  and  environmental  monitoring
[52]. PHWE is an alternative to organic solvent extraction
which uses pressurized water to extract compounds at high
temperature  and  controlled  pressure.  The  main  concept  of
this  method  is  to  change  the  polarity  of  water,  similar  to
those  of  alcohols  by  using  certain  temperatures  and  pres-
sures. Thus it can dissolve a wider range of medium and low
polarity compounds [53-56]. There are some major advan-
tages of PHWE since it reduces the consumption of organic
solvents in extraction, water is available everywhere and is
non-toxic, easily disposable and recyclable with minimum
environmental difficulties. It is a low-cost method that is effi-
cient in extracting less-polar organic compounds from a vari-
ety of matrices [52, 57, 58].

The first study to report PHWE was conducted in 1994
by  the  pioneer  of  this  field,  Hawthorne  and  co-workers.
They applied the pressurized water at elevated temperatures
to extract polar and non-polar compounds from soil samples
[59]. This method is being widely used to extract bioactive
compounds from plant materials. For example, Liau and co-
author  applied  PHWE  to  extract  glycosides  of  flavonoids
from defatted Camellia oleifera seeds [60] and studied the ef-
ficiency of experimental factors (temperature, time and pres-
sure)  on  the  extraction.  The  optimized  process  employed
140  °C,  600  psi  and  10  min  of  extraction  time.  Another
study reported the extraction of bioactive compounds from
Stevia  rebaudiana  Bertoni  leaves,  which  are  the  natural
sources of diterpenic glycosides and various bioactive com-
pounds [61]. They have studied the effect of various temper-
atures,  extraction  times  and  number  of  cycles  at  constant
pressure, and observed that temperature plays a crucial role
in PHWE extraction of bioactive compounds. They conclud-
ed that PHWE is a useful method to recover polar and nonpo-
lar antioxidants and steviol glycosides. A study from 2018
reported the preparation of ready to drink iced tea from sage
(Salvia officinalis L.) and linden (Tilia cordata) by the com-
bination of PHWE and spray-drying [62]. In that study, the
phenolics of sage and linden were extracted by PHWE first,
and then the extracts were spray-dried by the addition of mal-
todextrin. Finally, sucrose and citric acid were added to the
spray-dried product to obtain ready to drink iced tea.

2.5. Liquid-phase Microextraction Techniques
Liquid-phase microextraction (LPME), one of the minia-

turized liquid-liquid extraction (or solvent extraction) tech-
niques  that  are  considered as  an  environment-friendly  mi-

croextraction  approach,  minimizes  the  use  of  organic  sol-
vents and/or highly toxic chemicals [63]. In general, LPME
involves extracting and preconcentrating target analytes into
a few microliters of extraction solvent [64]. Some notable ad-
vantages of LPME include easy operation, low solvent and
sample  consumption,  being  environmental-friendly  (com-
pared to liquid-liquid extraction) and provide high enrich-
ment factor (high sample volume-to-extractant/acceptor vol-
ume ratios) for targeted analytes [65].

LPME can be classified into the exposed solvent and pro-
tected solvent microextraction modes. The two most com-
mon protected microextraction solvent modes are hollow fi-
bre  liquid-phase  microextraction  (HF-LPME)  and  elec-
tromembrane microextraction (EME), that use the microvol-
ume of the extraction solvent stored within a porous mem-
brane, e.g. a polypropylene hollow fiber. Key advantages of
these modes are the protection of extraction solvents against
chemical interferences and contaminants within the samples
[66]. The applications of polypropylene hollow fibre liquid-
phase microextraction (HF-LPME) in many analytical-based
studies are well-reviewed [67-69]. However, it is important
to  take  note  of  the  long  extraction  time  required  for  HF-
LPME, which is one of the major drawbacks of this passive
diffusion-based technique [70]. EME has emerged as an in-
teresting alternative to address such limitation by combining
concentration gradient with electrically driving force to facil-
itate the diffusion of the analytes into the acceptor phase. In
EME,  the  applied  electrical  potential  difference  promotes
the charged analytes to electrokinetically migrate from the
donor or sample solution through a supported liquid mem-
brane into the acceptor solution, which results in shorter ex-
traction time [71].

Recently, Armin Fashi et al., reported the development
of an EME technique for the fast extraction and preconcen-
tration of melamine in dairy products. EME combined with
HPLC-UV detection technique has been applied for the de-
termination  of  melamine  in  the  range  of  7-8000  ng  mL-1

(LOD of 2.0 - 5.8 ng mL−1),  with enrichment factor in the
range of 82-192. In this approach, the extraction time was
15 min, which is much shorter when compared with the HF-
LPME technique (60 min) that provided a detection limit of
0.003 mg kg-1 [72, 73]. For exposed solvent microextraction
modes,  SDME  and  DLLME  are  among  the  popular  tech-
niques preferred by analytical chemists. SDME was first in-
troduced by Liu and Dasgupta in 1996,  and utilizes liquid
droplet  as  a  sampling  interface  to  extract  chemical  subs-
tances from the air [74]. The technique then underwent dif-
ferent developments (e.g.  direct immersion-SDME, heads-
pace-SDME, continuous-flow microextraction (CFME) and
others) to cater to various applications [74, 75]. Versatility
and  simplicity  of  operations  are  the  key  advantages  of
SDME that generally requires only a standard analytic sy-
ringe.

Among all the LPME-based techniques, DLLME is re-
garded as the most recently introduced microextraction tech-
nique that was first developed by Assadi and co-workers in
2006 [76]. In DLLME, an appropriate proportion of high--
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density  extraction  (e.g.  chlorobenzene)  solvent  and  wa-
ter-miscible disperser solvent (e.g. MeOH) is rapidly inject-
ed into a sample solution using an analytical syringe. Ana-
lytes or solutes of interest within the sample solution are dis-
solved  in  the  micro-droplets  of  extraction  solvent  and  are
then concentrated in the immiscible phase [77]. A compre-
hensive  discussion  on  SDME  and  DLLME  principles  and
analysis has been made in a few systematic reviews; there-
fore, we do not intend to reiterate that information in this re-
view [77-79]. Worth mentioning is the recent development
in DLLME by using magnetic ionic liquid (MIL) as an ex-
tractant  phase  that  has  been  successfully  demonstrated  by
Fiorentini  and co-workers.  They used trihexyl  (tetradecyl)
phosphonium tetrachloroferrate (III) as the MIL with acetoni-
trile as a dispersant for the selective extraction of As (III)
species that have been chelated by acidified ammonium di-
ethyldithiophosphate. The MIL phase was then separated us-
ing a magnet, and the aliquot was directly injected into the
graphite furnace of electrothermal atomic absorption spec-
trometry for the measurement of As in honey. A sensitivity
enhancement factor of 110 and limit of detection of 12 ng
L−1 were achieved using the above-stated approach [80]. Fig.
(2) summarizes the techniques presented in section 2 of this
text.

3. GREEN CHEMISTRY IN ANALYTICAL CHROMA-
TOGRAPHY

Chromatography  methods  are  justifiably  considered
green, i.e., they use increasingly lower quantities of samples
and solvents and have an excellent performance in sensitivi-
ty,  precision  and  accuracy.  They  have  been  steadily  im-
proved since the birth of the instrumental version of the tech-
nique [81].

At the same time, chromatographic methods are exceptio-
nally  well-positioned  concerning  the  twelve  principles  of
green analytical chemistry [82] since they have (i) low and
diminishing waste generation [83] (ii) medium energy con-
sumption [84], (iii) use small quantities of the sample [85],
(iv) are increasingly resorted to automation/miniaturization
[86], (v) are readily coupled to other analytical techniques
[87],  and (vi) are also multianalyte methods by definition.
Although  (vii)  derivatization  should  be  avoided,  it  is  still
widely used in both gas (to increase volatility and thermal
stability)  and  liquid  (to  increase  detectability)  chromato-
graphic method [88]. (viii) The toxicity of derivatization rea-
gents [89] can reduce the safety for the operator,  which is
normally  high  in  chromatographic  analyses  without  them.
(ix) However, replacement and elimination of toxic reagents
and methods have been under development and stimulated
by increasingly tight legislation. The worst-case scenario for
a green principle of analytical chemistry in chromatography
is the use of (x) in situ measurements since sampling for ex-
ternal analysis is mandatory [90] and even gas chromatogra-
phy – normally faster than liquid chromatography – cannot
give impromptu results. Nevertheless, not only field instru-
ments  have  been  available  [91]  but  also  chromatographic
methods can use automatic sampling and run in parallel, if
the whole operation can wait and (xi) the direct injection of

matrices into the analytical system is possible, which is not
so common but can happen, e.g., in the analysis of gaseous
off-products by gas chromatography [92]. (xii) The use of re-
newable  sources  for  mobile  phase  is  the  subject  of  many
publications in liquid chromatography [93] and the wide us-
age of He in gas chromatography has not only been disputed
but also the other available options – N2 and H2 – have also
been under study and experimentation [94].

3.1. Micro-HPLC, Narrower Columns in GC and Multi-
-Dimensional Techniques

The early and ulterior developments of chromatography
theory always indicate that the reduction in particle size and
column diameter would bring the increase in separation pow-
er and speed [95]. However, only when technology develop-
ments allowed the production of homogeneous particles and
columns as well as pumps with steady flows that could over-
come the necessary ultrahigh pressures, these small dimen-
sions became feasible to every lab [96]. Since these evolu-
tions elicit faster analysis, less mobile phase consumption,
the injection of smaller amounts, and the increase of the sig-
nal to noise relationship, they make liquid chromatography a
greener methodology as well.

The  concept  of  micro-HPLC  as  the  miniaturization  of
HPLC systems  was  conceived  a  long  time  ago  [97],  even
though what was considered micro-HPLC in 1985 is today
“normal” HPLC. Indeed, column dimensions are still dimin-
ishing to the size of microchips that integrate injection and
detector ports that help reduce void volumes [98]. These lat-
ter  developments  allowed  the  sampling  of  minimum  vol-
umes and have been thoroughly used in biological, biomedi-
cal  and biochemistry  applications  [99].  They also reduced
the use of solvents to very small volumes. The columns are
laser blasted canals into the chips whose walls can be chemi-
cally coated just as GC capillary columns. These column di-
ameters are in the micrometer domain, which allows more
than reasonable chemical interaction and exceptional resolu-
tion achievements [85].

3.2. Multi-Dimensional Techniques
Multidimensional  chromatography  is  a  recent  trend  in

the chromatography field as it provides a massive improve-
ment in peak capacity (the number of theoretical peaks that
could be positioned at the separation space). This process in-
volves sample injection into at least two dimensions of sepa-
ration in  tandem to have an enhanced analysis.  Peaks that
are subjected to only one dimension of separation might not
be completely resolved, which is often known as the overlap-
ping issue of single-dimensional analysis [100]. In compre-
hensive  two-dimensional  scenarios,  for  example,  samples
are sliced in a very narrow sampling time to a very short se-
cond dimension to have another independent separation. Nu-
merous improvements and applications have been demons-
trated using this comprehensive two-dimensional method as
proof  of  the  utility  of  a  complete  separation  of  samples
[101].

Non-comprehensive two-dimensional methods can also
be used to enhance the analysis of just a section of the chro-
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matogram that is sampled to another column. In this latter
case, the second column can have larger lengths, since just
one slice is introduced to another chromatographic run that
can last any time [102].

The multidimensional techniques are considered sustain-
able, and green when compared to single-dimensional analy-
ses not only because of the improved peak capacities but al-
so because of other well-defined benefits. Multidimensional
techniques  often  offer  (a)  shorter  run  times,  (b)  shorter
columns, (c) extended columns lifetime because of reducing
exposure to high temperature, (d) less column bleeding, (e)
less sample requirement for each analysis, which reduces the
organic solvent usage per sample, (f) less use of carrier gas,
electricity and other resources per sample, and (g) reduced
maintenance of the detectors. There is a very well elaborated
review article on this topic covering the theory, instrumenta-
tion  and  application  of  the  multidimensional  techniques
[103].

3.2. Direct-Injection Mass Spectrometry (DIMS)
Currently, there are good arguments about the utility of

the  separation  techniques  in  the  analyses  before  the  mass
spectral  analysis.  In  the  last  few years,  huge  progress  has
been made in mass spectrometry and its sample introduction
processes, which can make the previous sample separation
obsolete for some types of samples analyses. These alterna-
tives of sample preparation methods have been studied for
the high-throughput and cost-effective analyses.

One of the very well-studied methods without any sam-
ple preparation is called DIMS or Direct Injection to Mass
Spectrometry. This method has already proved to be highly
sensitive and selective and an attractive alternative for the ex-
isting methods. DIMS is stable, and it is not prone to drift in
the  mass  spectral  ratio,  which  is  important  for  compound
identification. Several derivatives of this method have been
discussed  in  the  literature,  such  as  Atmospheric  pressure
chemical  ionization  (APCI),  Selected-ion  flow-tube  mass
spectrometry (SIFT-MS) and Proton-transfer-reaction mass
spectrometry (PTR-MS). The main idea of these techniques
is to produce an ion product of the samples before it gets in-
to  the  mass  spectrometry  for  detection.  Metabolomic
studies, food analysis, VOCs, and agricultural studies have
been described in the literature [104].

From a green separation perspective, it is advantageous
to use direct analysis as it removes chromatography section
in the sample analysis pathway, which would reduce the use
of  the  chemical  for  sample  preparation,  resources  for  the
chromatography analysis and would be more energy saving.
Additionally, direct injection to mass spectra often requires
a very small  amount of  sample that  is  beneficial  for  some
type of sample analysis. However, because of the strong ma-
trix effect, it is not often recommended for complex sample
analysis.  Nevertheless,  recent developments in chemomet-
rics  and  statistical  tools  have  helped  in  solving  matrix
problems  [105,  106].

The direct injection to mass spectra has been a key play-
er in the food sickens. A recent example shows the injection

of mammalian serum for a clinical lipidomics study to quan-
tify the cholesterol ester and free cholesterol coupled to elec-
trospray  ionization  high-resolution  mass  spectrometry  (E-
SI-HRMS) without any sample preparation. Compared to a
typical sample preparation approach, this process is greener
concerning a) the solvent use, b) resource use, c) cost and
many  more  [107].  The  direct  injection  techniques  which
eliminate the preconcentration step reduce the required sam-
ple volume for a challenging sample collection, e.g. marine
organic substances confined in ice [108]. This process also
eliminates the potential to introduce additional contamina-
tion during the pre-concentration process [109]. Numerous
other examples are reported in the literature with an inten-
tion to reduce the solvent used. However, there are few limit-
ing  factors  on  the  applicantion  of  this  method,  such  as  a)
very complex matrix,  b)  increased data processing,  and c)
poor sensitivity of the method.

4. FUTURE PERSPECTIVES
The sample preparation will probably continue to resort

to automation and preparative chromatography since it can
increase analysis speed and reduce costs. The use of greener
solvents or water in high temperature and pressure will also
probably evolve, provided that they reduce the cost and in-
crease speed as well.

Miniaturization and automation have been in steady de-
velopment  and  application  almost  from  the  beginning  of
chromatography. Both gas and liquid methods will probably
continue the shrinkage of injectors, columns and detectors as
well as the lower consumption of mobile phase, sample and
standards,  which  will  contribute  to  the  ever  increasingly
greener applications, the greener renovations of old methods
and the development of green new ones for wider usage.

Multidimensional methods may continue their evolution
mainly in the “omics” domain, where they may be the only
ones that can deal with the sheer number of substances that
come from very complex matrices and are required to be ful-
ly determined. At the same time, they can be able to main-
tain their green characteristics due to the equipment shrink-
age mentioned above.

The higher throughput of analysis, the whole lot of chem-
ical information generated and the number of substances ana-
lyzed in each sample increasingly demand the use of chemo-
metrics to make sense of the sheer volume of data. Besides,
chemometrics will continue to allow the coupling of some in-
strumental  techniques  that  produced  spectral  information
which did not suit well in mixtures before the advancement
of  multivariate  data  treatment.  However,  now  these  tech-
niques can provide insightful information since they can be
chemometrically resolved. Without chemometrics, many di-
rect sampling applications would not be feasible.

However, the gap of the chemical higher education to-
wards greener chemistry must be tackled to secure a wide-
spread usage of greener methods and the creation of greener
solutions all around the world. Chemometrician also needs a
better formation in Linear Algebra conceive many other ap-
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plications for if they have at least a basic understanding of
the fundamentals of chemometrics.

Some of the issues that will probably continue to bother
chemists around the world are the increasing cost of instru-
mentation and their non-sustainability. Every time a type of
instrumentation is turned obsolete, their destination is uncer-
tain,  their  spare  parts  will  disappear  from the  market,  and
even if they still can be useful, the technical assistance will
diminish, and repair will be increasingly costly. It is not un-
common to see still useful instruments with accessories that
still work after just being dumped to be substituted for up--
to-date instruments in laboratories that can afford it. This is
a topic that it is not yet green and should be dealt with.

CONCLUSION
The environmental concern that leads to greener and sus-

tainable separation science is steadily evolving. As a conse-
quence,  a  number of  attempts have been made throughout
the last couple of years to reduce the use of hazardous chemi-
cals for separation science. The methods and techniques that
showed promising results are still under development, and
newer techniques are emerging in these fields. All these in-
novations are taking shape to meet the sustainability criteria
by environmental agencies as well as economic considera-
tion of consumers and industry.
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