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ABSTRACT A nonlinear consensus model is assigned to resolve the consensus problem of multi-agent
systems (MAS). Other studies have constructed consensus systems based on low-complexity computation
linear equations or complex nonlinear equations. Linear equations are less efficient in reaching a consensus
due to their slow computation process, where nonlinear equations are more efficient. The three major
challenges in designing nonlinear consensus equations are: building a system of nonlinear equations that
have solution, easy to calculate, and less time consuming. This study aims to create a consensus system that
is nonlinear and easy to calculate. According to our survey, the DeGroot model (DGM) of 1974 is a linear
model and the first effect consensus model with a flexible computation process for finite nodes. We examine
if raising the exponential level for the initial cases of agents allows the system to achieve a consensus and
move the DGM to a nonlinear level. The results show that by raising the exponent, the DGM is able to reach
a consensus. The consensus of the DGM reaches a certain positive value that depends on the initial states
of the agents and the transition matrix, whereas the consensus of the proposed exponential DGM (EDGM)
reaches zero with a flexible and unrestricted matrix. Moreover, EDGM is a nonlinear model and reaches the
consensus faster than the DGM linear model. The results are supported by theoretical evidence and numerical
analysis.

INDEX TERMS DeGroot model, high exponent, consensus, MAS, transition matrix.

I. INTRODUCTION
There is a growing research trend towards artificial intelli-
gence. In many applications MAS constitute an essential ele-
ment of artificial intelligence, yet it suffers from a persistent
consensus problem. A lot of recent research has addressed
this problem of consensus or agreement [1];, however, it has
remained a rather formidable challenge forMAS [2]. Consen-
sus involves the statuses in agent and control planning where
an agreement via exchange of information has to be reached.
Agreement, on the other hand, demonstrates in which man-
ner smart agent groups congregate to an agreement through
self-communication. Also, the manner in which the word of
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agreement is being expressed shows that the statuses of all
agents have to be equal simultaneously [3].

Achieving consensus among smart agents through agent
collaboration constitutes the main focus of most current
research [4]. It has been indicated in [5]–[7] that the biggest
obstacle to building MAS is to facilitate the complex interac-
tion strategy applied to those phenomena that are needed to
complete the task. A structured complexity for nonlinear con-
sensus occurs when the communication of the interconnec-
tions among agents is stochastic [8]–[14]. In [15], a specific
MAS have been developed that can learn and handle micro
units in real-time strategy games and use the real-time version
of NEAT to adapt to new cases. The states can be defined as
views, principles, figures, beliefs, positions, speeds, among
others, depending on the context [16].
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Consensus has applications in most artificial intelligence
researches. In biological science studies involving the study
of behavioral sense of bird and fish flocking, models of
consensus have been used to analyze, forecast and explain
flocking behavior [17]. Consensus problems arise in robotics
and control systems as part of agent communication for robot
and sensor networks, where it is considered a big issue in the
applications of the network environment [18], [19]. In eco-
nomics and management sciences, the process of consensus
is equally important in stabilizing a stable reliable value [20].
In sociology, it is used in primary societies to determine a
shared language for social networks under dynamics esti-
mation [21]. It is also a widely covered topic of interest in
computer science[22].

Similarly, the question of agreement was discussed over
the past four decades. This discussion started in [20] and [23]
where the conditions were formed for the nodes commu-
nications in networks. Tsitsiklis [24] studied the mobil-
ity framework in the consensus stage for decision mak-
ing. Jadbabaie et al. [25] also deliberated the problem of
consensus collocation. Another consideration of theoreti-
cal framework consensus was investigated by Olfati-Saber
and Murray [26] and Olfati-Saber et al. [27] for multi-
input multi-output systems convergence. A comprehensive
survey of the relevant consensus problems of MAS can be
found in [1]. Moreover, most studies with solution domain
are related to the agreement protocol presented in [28]
and [29]. Cheng et al. [30] achieved a reaching agree-
ment for MAS by increasing the fault-tolerance in dis-
tributed systems and decreasing the message iterations by
proposing an algorithm using digital signature and grouping.
Nonlinear dynamic systems, on the other hand, were stud-
ied in [31] for leader-based consensus on the MAS neural
network.

Several existing studies, however, have been built on the
intuition that linear protocols are related to agent consen-
sus dynamics. This conjecture cannot always be satisfied
as physical engineering systems exhibit a particular kind of
consensus problem [25], [26]. It is not sufficient to agree that
their actions can be modified through an unbounded value for
these physical systems [32]. This in turn suggests the creation
of consensus protocols to ensure that the initial general state is
bounded [33], [34]. In addition, the created protocol should
be running and can be applied to develop the efficiency of
the agreement for the dynamic process [35], [36]. Hence, one
aim of this work is to build a nonlinear consensus model for
MAS. There is a significant challenge in designing nonlin-
ear consensus models. Indeed, several studies, such as that
of [37]–[42], have presented nonlinear stochastic control for
convergence to the average, however still including restricted
rules.

Starting at this point, our motivation is to explore flexible
nonlinear consensus models with faster processing and less
computational time to achieve optimum agreement. There-
fore, we propose the idea of exponential function for DGM
and transferring it to a nonlinear room. This would result

in less complicated computations and enables it to reach the
consensus faster.

II. BACKGROUND AND METHODS
In the linear distribution of DGM [20], a group of siindividual
members si = (s1, s2, . . . , sn) is considered. The individual
members states with initial statuses are denoted as s0i =(
s01, s

0
2, . . . , s

0
n
)
. These individual members have to communi-

cate among themselves to exchange their information. Thus,
the communications form a transition matrix Aij where its
elements (aij ≥ 0). When member i communicates with
member j, their current statuses are updated as follows:

s(t+1)
i =


a11 a12 · · ·
a21 a22 . . .
...

...
. . .

a1n
a2n
...

an1 an2 . . . ann



s(t)1
s(t)2
...

s(t)n

 ,

i = {1, 2, . . . , n} (1)

where aij are the elements of the transition matrix Aij and sti
are the members’ statuses. Note that in order to achieve the
consensus for equation (1), the transition matrix should be a
stochastic matrix. This means that each row in the matrix has
a sum equal to one; otherwise, the statuses will not reach a
consensus, which constitutes one of the weaknesses of DGM.

Continuously, the update process is repeated as the output
statuses of the current iteration become the input statuses of
the next iteration, as follows:

s(t+1)i =

∑n

i=1
Aijsti , i = {1, 2, . . . , n} (2)

where S is the operator to find the limit of trajectory of each
agent i, where i is the number of the agent, and (t + 1) is the
next iteration to reach the limit of the trajectory. However,
the sum constitutes the collective equations of each agent,
as each agent has its nonlinear equations from the commu-
nications with each other, where the equation for each agent
si form the product of each row i of the transition matrix Aij
and its initial status value of each row in sti , where i is the
number of the row in Aij and sti and j is the number of the
column in Aij.
In other words, the evaluator linear model of DGM is

derived as follows:

s(t+1)i


s(t+1)1 = a11s1 + a12s2 + . . .+ a1nsn
s(t+1)2 = a21s1 + a22s2 + . . .+ a2nsn
... =

... +
... +

. . . +
...

s(t+1)n = an1s1 + an2s2 + . . . C annsn

(3)

Here, the equation clarifies in more detail that the equation
for each agent (s1, s2, . . . , sn) is the product of the commu-
nication aij of the agent i with agent j and initial status si.
The process (t + 1) for the next iteration is repeated until all
statuses of the members converge at the same value. Hence,
it can be confirmed that all members of the agents have agreed
on a consensus.
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The transition matrix entails the communications values
which transfer the current statuses of the nodes to new sta-
tuses. The transition matrix can be:

• Non-stochastic matrix: a matrix that has the sum of each
row or column not equal to one.

• Stochastic matrix: a square matrix that has the sum of
any column or row equal to one.

• Doubly stochastic matrix: a square matrix that has the
sum of any column and row equals to one.

• Non-symmetric matrix: a square matrix that has at least
one value of aij not equal to the element of aji.

• Symmetric matrix: a square matrix that has at least one
value of aij equal to the value of aji.

• Reducible matrix: a square matrix that can be divided
into n disconnected group.

• Periodicmatrix: a squarematrix that has at least one time
equal to the matrix that has n power exponent.

III. PROPOSED MODEL
In this section, a high exponent for the statuses of individual
members of the DGM is proposed for agreement in MAS.

Refer to equation (2) and assume that nmembers of agents
have exponent e, (se)ti , where e ≥ 1.
Then, the evaluator of EDGM to realize the consensus in

MAS can be given as follows:

s(t+1)i =

∑n

i=1
Aij ∗

(
sei
)t

, i = {1, 2, . . . , n} (4)

where the process involves the same equation (2), where e
is the new condition for the statuses. In this case,

(
sei
)t are

the agent statuses with proposed exponent e in column form,
where e ≥ 1 where the sum of the statuses is a stochastic
(the sum of them equals to one), and t is the iteration number
in the process to reach the agreement statuses. Alternatively,
this can be written as:

s(t+1)i =


a11 a12 · · ·
a21 a22 . . .
...

...
. . .

a1n
a2n
...

an1 an2 . . . ann



(
se1
)t(

se2
)t

...(
sen
)t

 (5)

The condition of reaching the agreement is that all the states
of the individual agent members converge to the same limit
when t →∞. Thus, the nonlinear evaluator of EDGM is
given as:

s(t+1)
i =


s(t+1)
1 = a11se1 + a12s

e
2 + . . .+ a1nsen

s(t+1)
2 = a21se1 + a22s

e
2 + . . .+ a2nsen

... =
... +

... +
. . . +

...

s(t+1)
3 = an1se1 + an2s

e
2 + . . .+ annsen

(6)

If we look at equation (6), the equations have become non-
linear and the process remains easy to compute, where the
difference between equation (3) and (6) is that the statuses
have an exponent e.

IV. THEORETICAL RESULT
Theorem 1: Assume that a set of agents in MAS is discussing
some ideas and exchange information among them by EDGM
rule. It follows that MAS will reach a contract on a union
value by exchanging their information if any of the agents
starts with an idea in the positive case.

Proof: Allow a group of agents
(
s01,s02, . . . ,s0n

)
to start

with a random positive status where 0 ≤ s0i ≤ 1.
These agents communicate with each other by the rule of

EDGM protocol distributions, which means that their ideas
are powered e times. Additionally, when every member of the
agents has exchanged its idea with its respective neighbor,
the implication is that the agent’s status has been multiplied
by the connection value (edge value) of another agent with
the high degree of e :

aij ∗ (s
0
j )

e
where e ≥ 2 (7)

Thus, the initial statuses are given from zero to one,0 ≤ s0i ≤
1, meaning that the product of (s0i )

e
is approximately very

close to zero.

aij ∗ (s
0
j )

e
≈ 0 (8)

Consequently, the limit of s(t+1)
i using the evaluator of equa-

tion (6) makes the agents’ limit to approximate to equals
values.

Hence, s(t+1)i is fixed and bounded and (s0i )
e
is also

bounded.
Furthermore, since the limt→∞ sti are equal, then

lim
t→∞

d(sti) = lim
t→∞

MAX(sti)
e
− lim

t→∞
MIN(sti)

e
= 0,

In turn, the s0i converge to fixed values. �
Corollary 1: It can be derived from Theorem 1 that since

the e is large, the consensus is realized faster.
Proof: Allow the group of agent members

(
s01,s02, . . . ,

s0m
)
to start with ideas in random positive cases where 0 ≤

s0i ≤ 1.
By applying the EDGM, thus

(s0j )
e

(9)

This means that when e is bigger, sj reaches a consensus
faster. �

V. SIMULATION RESULT
First, we start by showing the numerical analysis of EDGM
and DGM.

The number of agents is considered here as three agents
and the result is generalized to a finite number of agents. The
initial statuses of agents are considered random and stochastic
where 0 ≤ si ≤ 1 and the sum of all si equals to one.
The transition matrix is tested for its various forms as

follows:
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FIGURE 1. Consensus of DGM and EDGM when e=1,000 for 1,000 agents.

Case 1: Transition matrix of non-stochastic (NSM) and
non-symmetric (nonsym):

Aij =

0.7 0.4 0.4
0.4 0.2 0.6
0.9 0.9 0.7


Case 2: Transition matrix of non-stochastic (NSM) and
symmetric (sym):

Aij =

0.9 0.4 0.6
0.4 0.8 0.5
0.6 0.5 0.2


199326 VOLUME 8, 2020
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FIGURE 2. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix
case 1 of non-stochastic (NSM) and non-symmetric (nonsym) for 100 agents in 100 times.

Case 3: Transition matrix of stochastic (SM) and
non-symmetric (nonsym):

Aij =

0.25 0.5 0.25
0.1 0.15 0.75
0.3 0.1 0.6


Case 4: Transition matrix of stochastic (SM) and symmetric
(sym):

Aij =

0.4 0.5 0.1
0.5 0.4 0.1
0.1 0.1 0.8


Case 5: Transition matrix of doubly stochastic (DSM) and
non-symmetric (nonsym):

Aij =

0.4 0.05 0.55
0.1 0.85 0.05
0.5 0.1 0.4



Case 6: Transition matrix of doubly stochastic (DSM) and
symmetric (sym):

Aij =

 0.9 0.05 0.05
0.05 0.3 0.65
0.05 0.65 0.3


Case 7: Transition matrix of stochastic (SM) and reducible:

Aij =

 1 0 0
0 1 0
0.4 0.6 0


Case 8: Transition matrix of stochastic (SM) and periodic:

Aij =

0 1 0
0 0 1
1 0 0


VOLUME 8, 2020 199327
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FIGURE 3. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 2
of non-stochastic (NSM) and symmetric (sym) tested for 100 agents in 100 times.

Case 9: Transition matrix of zeros:

Aij =

0 0 0
0 0 0
0 0 0


Case 10: Transition matrix of ones:

Aij =

1 1 1
1 1 1
1 1 1


Note that all transition matrices are examples for only three

agents. However, the simulation for figures will be provided
for 1,000 agents to show that the proposed model is worked
for finite numbers of agents.

The result of the numerical analysis is shown in Figure 1 for
the consensus of EDGM with e = 1,000 for 1,000 agents
compared the original model of DGM under the transition

matrix cases from 1 to 10 (as mentioned above). Furthermore,
the x-axis in the graph represents the initial statuses between
[0,1] for all agents; however, the y-axis represents the number
of iterations made to reach a consensus. Each line in the graph
represents one agent, and the consensus case appears in the
end as one line, which means that it has reached a consensus.

The general DGM reaches a consensus only in cases (4, 5,
6, 9, and 10) where the transition matrix is SM-sym, DSM-
nonsym, DSM-sym, zeros, or ones, and does not reach a
consensus in cases (1, 2, 7, and 8) where the transition matrix
is NSM-nonsym, NSM-sym, SM-reducible, or SM-periodic.
However, evenDGMhas reached the consensus in cases (4, 5,
6, 9, and 10), but the process requiresmore time, whichmeans
that the cost of the process is very high. It can be seen that in
cases (4, 5, and 6) shown in Figure 1 the consensus is reached
after 15 iterations, while in case 10 the consensus con-
verges to an unknown value. Nevertheless, EDGM reaches a

199328 VOLUME 8, 2020
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FIGURE 4. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber for transition matrix case 3 of
stochastic (SM) and non-symmetric (nonsym) tested for 100 agents in 100 times.

consensus in all cases from [1-10] in the second iteration,
which means that it reaches a consensus faster than DGM.
In fact, the general DGM shows its weakness in reaching a
consensus in periodic and reducible networks, as mentioned
in [20]. For this reason, we propose the nonlinear control
of EDGM that is able to reach a consensus in these cases.
Note that all consensus cases of EDGM reach a consensus
over a fixed value. Furthermore, the most significant aspect
of the more efficient EDGM model is that it is a nonlinear
model.

VI. COMPARING THE CONSENSUS OF RELATED WORKS
WITH THE PROPOSED EDGM MODEL
It is worthwhile to examine the differences between our
model and other research models. First, the purpose of this
work is to study the leading consensus model, which is
DeGroot model (DGM) [20]. The DGM consensus model is

an elastic process for communication in networks. It applies
the concept of Markov chains, which is also considered as
one of the most useful mathematical models and has many
applications in models of real-world processes, such as study-
ing control systems for auto vehicles. Furthermore, DGM
incurs less computation cost to reach the consensus result.
The main motivation for our work is to improve upon the
DGMconsensusmodel by introducing a new exponent for the
model (EDGM). Through various case studies, we demon-
strate that the proposed idea for DGM performs more effi-
ciently and transfer the DGM model to a nonlinearity level.
Looking at several existing works such as [1], [25], [26],
[31]–[34], we observe that only [1] has extensively studied
the problem MAS consensus problem and has suggested
several applications. Reference [25] has provided a theo-
retical explanation for the Vicsek consensus model [17],
which studied the behaviour of the motion of a swarm of

VOLUME 8, 2020 199329
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FIGURE 5. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model transition for transition
matrix case 4 of stochastic (SM) and symmetric (sym) tested for 100 agents in 100 times.

independent smart agents at the same speed, but with different
heads. However, the Vicsek model is a linear system and
has limited applications compared to the proposed EDGM
model. Furthermore, [26] has studied the consensus model
for three various networks: directed and fixed, directed and
switching, and undirected faxed and switching, whereas this
proposed model involves linear, complicated computation
and has more restricted conditions for the transition matrix
as well as to the flexible conditions of EDGM. A nonlinear
consensus model has been considered in [31] for leader-based
consensus but themodel is complicated and also has restricted
rules. A nonlinear operator of quadratic stochastic operators
as investigated in [32] for the cooperation of MAS also
involves complicated computation and restricted conditions
compared to the proposed EDGM. Furthermore, another con-
sensus controls neural networks and directed networks of
MAS as proposed in [33], [34] includes complex nonlinear

functions. We can thus conclude that DGM possesses the
most flexible system to solve the consensus problem. Since
the proposed EDGM outperforms the DGM, it has to be
considered as a more efficient and thus superior consensus
model.

Also provided are comparisons of the qualitative and quan-
titative simulation experimental results to verify the validity
of the proposed EDGM model to other related woks such as
DGM [20], CSQO [32], DSQO [37], EDSQO [6], and the
Olfati-Saber model [27].

We are now in the position to show the strength of
our proposed model, which we compare to five popular
models with the same style. Emphasis is placed on these
models because they are considered the most flexible mod-
els for the consensus process. DGM is considered as the
easiest and most flexible model of the consensus process.
However, DGM and the other models have a consensus
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R. Abdulghafor et al.: Study of Positive Exponential Consensus on DGM

FIGURE 6. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 5
of doubly stochastic (DSM) and non-symmetric (nonsym) tested for 100 agents in 100 times.

TABLE 1. An Average Number of Iterations in Quantitative Simulation Experimental Results for the consensus of EDSM Method Compared to DGM, CSQO,
DSQO, EDSQO, and Olfati-Saber for 100 agents in 100 times.

problem in some cases, especially when the MAS commu-
nication (transition matrix) is non-stochastic, periodic and
reducible. As part of this comparison, we highlight examples

of such cases [1-8] of the transition matrix in the previ-
ous section to show the efficiency of our proposed EDGM
model.

VOLUME 8, 2020 199331
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FIGURE 7. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 6 of doubly stochastic (DSM) and
symmetric (sym) tested for 100 agents in 100 times.

Note that the transition matrix examples that have been
mentioned in the previous section are for three agents only
– the complete matrix cannot be displayed here due to its
large size. However, the figure simulation is provided for
100 agents in 100 times test.

Furthermore, we can explain the lower efficiency of
the compared models DGM, CSQO, DSQO, EDSQO, and
Olfati-Saber by classifying them into: the first class of the

models has easy computation but is linear such as DGM and
Olfati-Saber model, and the second class is nonlinear but
involves complicated computations such as CSQO, DSQO,
and EDSQO. It is important to note here that in the nonlinear
models of CSQO, DSQO, and EDSQO the transition matrix
should be distributed into n matrices and each matrix should
be n by n where n is the number of the agents in MAS. If we
have 1,000 agents or more, the transition matrices are to be

199332 VOLUME 8, 2020



R. Abdulghafor et al.: Study of Positive Exponential Consensus on DGM

FIGURE 8. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix
case 7 of stochastic (SM) and reducible tested for 100 agents in 100 times.

TABLE 2. An Average Time Spent in Seconds in Quantitative Simulation Experimental Results for the consensus of DGM, CSQO, DSQO, EDSQO, and
Olfati-Saber for 100 agents in 100 times.

distributed for calculation will be many and thus complicate
the process.

Based on this analysis we can confirm that the proposed
EDGMmodel is more efficient than other models and is able
to achieve consensus in the case of a non-stochastic, periodic

and reducible transition matrix, it has only one distributed
matrix, and is a nonlinear model.

Consequently, now some quantitative simulation experi-
mental results of EDSM method are compared with DGM,
CSQO, DSQO, EDSQO, and Olfati-Saber for 100 agents

VOLUME 8, 2020 199333
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FIGURE 9. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 8 of stochastic (SM) and
periodic tested for 100 agents in 100 times.

in 100 tests time, based on eight types (cases [1-8]) of
transition matrix. Tables 1 and 2 show the comparison of
the average number of iterations and the average time spent
in seconds respectively, for the consensus of DGM, EDSM
(proposed model), CSQO, DSQO, EDSQO, and Olfati-Saber
for cases 1-8 of the transition matrix as mentioned above
in section V. In this experimental results, we can observe in
Figures 2, 3, and 9 included the Tables 3, 4, 5, 6, 17 and 18 in

the Appendix section that the compared models of DGM,
CSQO, DSQO, EDSQO, and Olfati-Saber do not achieve the
consensus in cases 1, 2, and 8 of the transition matrix, while
the consensus in the proposed EGM model can achieve it in
only one iteration.

Moreover, in case 7 of the transition matrix DGM, DSQO,
EDSQO, and Olfati-Saber do not achieve the consensus,
while the proposed model EDGM and the CSQO achieve the
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consensus where it has shown in Figure 8 and Tables 15 and
16 in the Appendix section. However, in this case the pro-
posed EDGM model reaches the consensus faster, with an
average of one iteration in 2.05E-04 seconds, as compared to
CSQO with an average of 11.13 iterations in 3.49E-04 sec-
onds. The average number of iterations and time has been
tested here for 100 agents in 100 times.

Furthermore, in cases [3-6] of the transition matrices com-
paring all models, the proposed EDGM model reaches the
consensus faster, as shown in Figures 4-7 and Tables 7-14
in the Appendix section, with the average of one itera-
tion in 6.70E-05, 4.62E-05, 4.05E-05, and 4.99E-05 sec-
onds for Cases 3, 4, 5, and 6 respectively, tested for
100 agents in 100 times, compared to the other models of
DGM, CSQO, DSQO, EDSQO, and Olfati-Saber with the
average of 11.68-36.31 iterations (Table 1) in 1.48E-04-
1.91E-04 seconds (Table 2), for transition matrix Case 3,
4.15-35.59 iterations (Table 1) in 1.64E-04-1.64E-04 seconds
(Table 2) for transition matrix case 4, 3.07-52.27 iterations
(Table 1) in 1.77E-04-4.15E-05 seconds (Table 2) for the
transition matrix Case 5, and3.07-52.27 iterations (Table 1)
in 5.25E-05-2.87E-04 seconds (Table 2) for transition matrix
case 6.

From this quantitative analysis we can conclude that the
proposed EDGM model is more efficient in achieving the
consensus for MAS.

VII. CONCLUSION
The paper has discussed a famous DGM consensus model
used in many applications. We have developed the model
into a nonlinear model by means of an exponent degree. The
proposed exponential DGM model is termed EDGM with
respect to the consensus reached inMAS. Simulation analysis
has been tested for 10 cases of the transition matrix, as it
has been presented in the section discussing the simulation
result. This investigation demonstrates that the proposed non-
linear distribution EDGM can be attributed to more efficient
convergence for the consensus in MAS. Moreover, we have
shown that the proposed EDGM is a nonlinear model, reaches
a consensus faster, and achieves the consensus in all cases of
the transition matrix [1-8] as compared to the consensus mod-
els of DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber.
The weakened of the compared models that either consensus
cannot be achieved in these cases or some are linear models,
or the reaching consensus is slow. We consider this as a
significant contribution since the proposed consensus model,
EDGM, has achieved the consensus under non-stochastic,
reducible, and periodic networks, and faster which have been
identified as a significant drawback of the other compared
models. For future work, other possible applications for the
proposed model of EDGM should be considered.

APPENDIX
Case 1: Transition matrix of non-stochastic (NSM) and
non-symmetric (nonsym): (Figure 2)

TABLE 3. Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.
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TABLE 3. (Continued.) Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

TABLE 3. (Continued.) Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

TABLE 4. Average Time spent to achieve Consensus for Non-stochastic
(NSM) and Non-symmetric (nonsym) Matrix.
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TABLE 4. (Continued.) Average Time spent to achieve Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

TABLE 4. (Continued.) Average Time spent to achieve Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.
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TABLE 4. (Continued.) Average Time spent to achieve Consensus for
Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

Case 2: Transition matrix of non-stochastic (NSM) and
symmetric (sym) (Figure 3)
TABLE 5. Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Symmetric (sym) Matrix.

TABLE 5. (Continued.) Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Symmetric (sym) Matrix.
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TABLE 5. (Continued.) Average Number of Iterations in the Consensus for
Non-stochastic (NSM) and Symmetric (sym) Matrix.

TABLE 6. Average Time spent to achieve Consensus for Non-stochastic
(NSM) and Symmetric (sym) Matrix.
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TABLE 6. (Continued.) Average Time spent to achieve Consensus for
Non-stochastic (NSM) and Symmetric (sym) Matrix.

TABLE 6. (Continued.) Average Time spent to achieve Consensus for
Non-stochastic (NSM) and Symmetric (sym) Matrix.
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Case 3: Transition matrix of stochastic (SM) and non-
symmetric (nonsym) (Figure 4)

TABLE 7. Average Number of Iterations in the Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.

TABLE 7. (Continued.) Average Number of Iterations in the Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.
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TABLE 7. (Continued.) Average Number of Iterations in the Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.

TABLE 8. Average Time spent to achieve Consensus for Stochastic (SM)
and Non-symmetric (nonsym) Matrix.

TABLE 8. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.
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TABLE 8. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.

TABLE 8. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Non-symmetric (nonsym) Matrix.

Case 4: Transition matrix of stochastic (SM) and symmetric
(sym) (Figure 5)
TABLE 9. Average Number of Iterations in the Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.

VOLUME 8, 2020 199343



R. Abdulghafor et al.: Study of Positive Exponential Consensus on DGM

TABLE 9. (Continued.) Average Number of Iterations in the Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.

TABLE 9. (Continued.) Average Number of Iterations in the Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.

TABLE 10. Average time Spent to achieve Consensus for Stochastic (SM)
and Symmetric (sym) Matrix.
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TABLE 10. (Continued.) Average time Spent to achieve Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.

TABLE 10. (Continued.) Average time Spent to achieve Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.
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TABLE 10. (Continued.) Average time Spent to achieve Consensus for
Stochastic (SM) and Symmetric (sym) Matrix.

Case 5: Transition matrix of doubly stochastic (DSM) and
non-symmetric (nonsym) (Figure 6)
TABLE 11. Average Number of Iterations in the Consensus for Doubly
Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

TABLE 11. (Continued.) Average Number of Iterations in the Consensus
for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.
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TABLE 11. (Continued.) Average Number of Iterations in the Consensus
for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

TABLE 11. (Continued.) Average Number of Iterations in the Consensus
for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

TABLE 12. Average time Spent to Achieve Consensus for Doubly
Stochastic (DSM) and Non-symmetric (nonsym) Matrix.
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TABLE 12. (Continued.) Average time Spent to Achieve Consensus for
Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

TABLE 12. (Continued.) Average time Spent to Achieve Consensus for
Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.
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TABLE 12. (Continued.) Average time Spent to Achieve Consensus for
Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

Case 6: Transition matrix of doubly stochastic (DSM) and
symmetric (sym) (Figure 7)

TABLE 13. Average Number of Iterations in the Consensus for Doubly
Stochastic (DSM) and Symmetric (sym) Matrix.

TABLE 13. (Continued.) Average Number of Iterations in the Consensus
for Doubly Stochastic (DSM) and Symmetric (sym) Matrix.
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TABLE 13. (Continued.) Average Number of Iterations in the Consensus
for Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

TABLE 14. Average time Spent To achieve Consensus for Doubly
Stochastic (DSM) and Symmetric (sym) Matrix.

TABLE 14. (Continued.) Average time Spent To achieve Consensus for
Doubly Stochastic (DSM) and Symmetric (sym) Matrix.
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TABLE 14. (Continued.) Average time Spent To achieve Consensus for
Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

TABLE 14. (Continued.) Average time Spent To achieve Consensus for
Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

Case 7: Transition matrix of stochastic (SM) and reducible
(Figure 8)
TABLE 15. Average Number of Iterations in the Consensus for
Stochastic (SM) and Reducible Matrix.
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TABLE 15. (Continued.) Average Number of Iterations in the Consensus
for Stochastic (SM) and Reducible Matrix.

TABLE 15. (Continued.) Average Number of Iterations in the Consensus
for Stochastic (SM) and Reducible Matrix.
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TABLE 15. (Continued.) Average Number of Iterations in the Consensus
for Stochastic (SM) and Reducible Matrix.

TABLE 16. Average Time spent to achieve Consensus for Stochastic (SM)
and Reducible Matrix.

TABLE 16. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Reducible Matrix.
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TABLE 16. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Reducible Matrix.

TABLE 16. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Reducible Matrix.

Case 8: Transition matrix of stochastic (SM) and periodic
(Figure 9)

TABLE 17. Average Number of Iterations in the Consensus for
Stochastic (SM) and Periodic Matrix.
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TABLE 17. (Continued.) Average Number of Iterations in the Consensus
for Stochastic (SM) and Periodic Matrix.

TABLE 17. (Continued.) Average Number of Iterations in the Consensus
for Stochastic (SM) and Periodic Matrix.
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TABLE 18. Average Time spent to achieve Consensus for Stochastic (SM)
and Periodic Matrix.

TABLE 18. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Periodic Matrix.
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TABLE 18. (Continued.) Average Time spent to achieve Consensus for
Stochastic (SM) and Periodic Matrix.
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