

Received September 30, 2020, accepted October 16, 2020, date of publication October 28, 2020, date of current version November 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034303

A Study of Positive Exponential Consensus on DeGroot Model

RAWAD ABDULGHAFOR^{®1}, HAMAD ALMOHAMEDH², ABDULLAH R. ALHARBI^{®3}, MOTEEB A. AL MOTERI⁴, AND SULTAN ALMOTAIRI^{®5}

¹Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia

²National Center for Aeronautical Technology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

³Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia

⁴Department of Management Information Systems, Business Administration College, King Saud University, Riyadh 11451, Saudi Arabia

⁵Department of Natural and Applied Sciences, Community College, Majmaah University, Al-Majmaah 11952, Saudi Arabia

Corresponding authors: Rawad Abdulghafor (rawad@iium.edu.my), Sultan Almotairi (almotairi@mu.edu.sa), and Hamad Almohamedh (halmohamedh@kacst.edu.sa)

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under project number NO (RGP-2019-29). Also, the authors would like to thank the Faculty of Information and Communication Technology, International Islamic University Malaysia.

ABSTRACT A nonlinear consensus model is assigned to resolve the consensus problem of multi-agent systems (MAS). Other studies have constructed consensus systems based on low-complexity computation linear equations or complex nonlinear equations. Linear equations are less efficient in reaching a consensus due to their slow computation process, where nonlinear equations are more efficient. The three major challenges in designing nonlinear consensus equations are: building a system of nonlinear equations that have solution, easy to calculate, and less time consuming. This study aims to create a consensus system that is nonlinear and easy to calculate. According to our survey, the DeGroot model (DGM) of 1974 is a linear model and the first effect consensus model with a flexible computation process for finite nodes. We examine if raising the exponential level for the initial cases of agents allows the system to achieve a consensus and move the DGM to a nonlinear level. The results show that by raising the exponent, the DGM is able to reach a consensus. The consensus of the DGM reaches a certain positive value that depends on the initial states of the agents and the transition matrix, whereas the consensus of the proposed exponential DGM (EDGM) reaches zero with a flexible and unrestricted matrix. Moreover, EDGM is a nonlinear model and reaches the consensus faster than the DGM linear model. The results are supported by theoretical evidence and numerical analysis.

INDEX TERMS DeGroot model, high exponent, consensus, MAS, transition matrix.

I. INTRODUCTION

There is a growing research trend towards artificial intelligence. In many applications MAS constitute an essential element of artificial intelligence, yet it suffers from a persistent consensus problem. A lot of recent research has addressed this problem of consensus or agreement [1];, however, it has remained a rather formidable challenge for MAS [2]. Consensus involves the statuses in agent and control planning where an agreement via exchange of information has to be reached. Agreement, on the other hand, demonstrates in which manner smart agent groups congregate to an agreement through self-communication. Also, the manner in which the word of

The associate editor coordinating the review of this manuscript and approving it for publication was Yang Tang^(D).

agreement is being expressed shows that the statuses of all agents have to be equal simultaneously [3].

Achieving consensus among smart agents through agent collaboration constitutes the main focus of most current research [4]. It has been indicated in [5]–[7] that the biggest obstacle to building MAS is to facilitate the complex interaction strategy applied to those phenomena that are needed to complete the task. A structured complexity for nonlinear consensus occurs when the communication of the interconnections among agents is stochastic [8]–[14]. In [15], a specific MAS have been developed that can learn and handle micro units in real-time strategy games and use the real-time version of NEAT to adapt to new cases. The states can be defined as views, principles, figures, beliefs, positions, speeds, among others, depending on the context [16].

Consensus has applications in most artificial intelligence researches. In biological science studies involving the study of behavioral sense of bird and fish flocking, models of consensus have been used to analyze, forecast and explain flocking behavior [17]. Consensus problems arise in robotics and control systems as part of agent communication for robot and sensor networks, where it is considered a big issue in the applications of the network environment [18], [19]. In economics and management sciences, the process of consensus is equally important in stabilizing a stable reliable value [20]. In sociology, it is used in primary societies to determine a shared language for social networks under dynamics estimation [21]. It is also a widely covered topic of interest in computer science[22].

Similarly, the question of agreement was discussed over the past four decades. This discussion started in [20] and [23] where the conditions were formed for the nodes communications in networks. Tsitsiklis [24] studied the mobility framework in the consensus stage for decision making. Jadbabaie et al. [25] also deliberated the problem of consensus collocation. Another consideration of theoretical framework consensus was investigated by Olfati-Saber and Murray [26] and Olfati-Saber et al. [27] for multiinput multi-output systems convergence. A comprehensive survey of the relevant consensus problems of MAS can be found in [1]. Moreover, most studies with solution domain are related to the agreement protocol presented in [28] and [29]. Cheng et al. [30] achieved a reaching agreement for MAS by increasing the fault-tolerance in distributed systems and decreasing the message iterations by proposing an algorithm using digital signature and grouping. Nonlinear dynamic systems, on the other hand, were studied in [31] for leader-based consensus on the MAS neural network.

Several existing studies, however, have been built on the intuition that linear protocols are related to agent consensus dynamics. This conjecture cannot always be satisfied as physical engineering systems exhibit a particular kind of consensus problem [25], [26]. It is not sufficient to agree that their actions can be modified through an unbounded value for these physical systems [32]. This in turn suggests the creation of consensus protocols to ensure that the initial general state is bounded [33], [34]. In addition, the created protocol should be running and can be applied to develop the efficiency of the agreement for the dynamic process [35], [36]. Hence, one aim of this work is to build a nonlinear consensus model for MAS. There is a significant challenge in designing nonlinear consensus models. Indeed, several studies, such as that of [37]–[42], have presented nonlinear stochastic control for convergence to the average, however still including restricted rules.

Starting at this point, our motivation is to explore flexible nonlinear consensus models with faster processing and less computational time to achieve optimum agreement. Therefore, we propose the idea of exponential function for DGM and transferring it to a nonlinear room. This would result

in less complicated computations and enables it to reach the consensus faster.

II. BACKGROUND AND METHODS

In the linear distribution of DGM [20], a group of s_i individual members $s_i = (s_1, s_2, \dots, s_n)$ is considered. The individual members states with initial statuses are denoted as s_i^0 = $(s_1^0, s_2^0, \ldots, s_n^0)$. These individual members have to communicate among themselves to exchange their information. Thus, the communications form a transition matrix A_{ii} where its elements $(a_{ij} \geq 0)$. When member *i* communicates with member *j*, their current statuses are updated as follows:

$$s_{i}^{(t+1)} = \begin{pmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ a_{n1} \ a_{n2} \ \cdots \ a_{nn} \end{pmatrix} \begin{pmatrix} s_{1}^{(t)} \\ s_{2}^{(t)} \\ \vdots \\ s_{n}^{(t)} \end{pmatrix},$$
$$i = \{1, 2, \dots, n\} \qquad (1)$$

where a_{ii} are the elements of the transition matrix A_{ii} and s_i^{I} are the members' statuses. Note that in order to achieve the consensus for equation (1), the transition matrix should be a stochastic matrix. This means that each row in the matrix has a sum equal to one; otherwise, the statuses will not reach a consensus, which constitutes one of the weaknesses of DGM.

Continuously, the update process is repeated as the output statuses of the current iteration become the input statuses of the next iteration, as follows:

$$s_i^{(t+1)} = \sum_{i=1}^n A_{ij} s_i^t, \quad i = \{1, 2, \dots, n\}$$
(2)

where S is the operator to find the limit of trajectory of each agent *i*, where *i* is the number of the agent, and (t + 1) is the next iteration to reach the limit of the trajectory. However, the sum constitutes the collective equations of each agent, as each agent has its nonlinear equations from the communications with each other, where the equation for each agent s_i form the product of each row *i* of the transition matrix A_{ii} and its initial status value of each row in s_i^t , where *i* is the number of the row in A_{ij} and s_i^t and j is the number of the column in A_{ii} .

In other words, the evaluator linear model of DGM is derived as follows:

$$s_{i}^{(t+1)} \begin{cases} s_{1}^{(t+1)} = a_{11}s_{1} + a_{12}s_{2} + \dots + a_{1n}s_{n} \\ s_{2}^{(t+1)} = a_{21}s_{1} + a_{22}s_{2} + \dots + a_{2n}s_{n} \\ \vdots = \vdots + \vdots + \vdots + \ddots + \vdots \\ s_{n}^{(t+1)} = a_{n1}s_{1} + a_{n2}s_{2} + \dots C a_{nn}s_{n} \end{cases}$$
(3)

Here, the equation clarifies in more detail that the equation for each agent (s_1, s_2, \ldots, s_n) is the product of the communication a_{ij} of the agent *i* with agent *j* and initial status s_i . The process (t + 1) for the next iteration is repeated until all statuses of the members converge at the same value. Hence, it can be confirmed that all members of the agents have agreed on a consensus.

The transition matrix entails the communications values which transfer the current statuses of the nodes to new statuses. The transition matrix can be:

- Non-stochastic matrix: a matrix that has the sum of each row or column not equal to one.
- Stochastic matrix: a square matrix that has the sum of any column or row equal to one.
- Doubly stochastic matrix: a square matrix that has the sum of any column and row equals to one.
- Non-symmetric matrix: a square matrix that has at least one value of *a_{ii}* not equal to the element of *a_{ii}*.
- Symmetric matrix: a square matrix that has at least one value of a_{ii} equal to the value of a_{ii} .
- Reducible matrix: a square matrix that can be divided into *n* disconnected group.
- Periodic matrix: a square matrix that has at least one time equal to the matrix that has *n* power exponent.

III. PROPOSED MODEL

In this section, a high exponent for the statuses of individual members of the DGM is proposed for agreement in MAS.

Refer to equation (2) and assume that *n* members of agents have exponent e, $(s^e)_i^t$, where $e \ge 1$.

Then, the evaluator of EDGM to realize the consensus in MAS can be given as follows:

$$s_i^{(t+1)} = \sum_{i=1}^n A_{ij} * (s_i^e)^t, \quad i = \{1, 2, \dots, n\}$$
(4)

where the process involves the same equation (2), where e is the new condition for the statuses. In this case, $(s_i^e)^t$ are the agent statuses with proposed exponent e in column form, where $e \ge 1$ where the sum of the statuses is a stochastic (the sum of them equals to one), and t is the iteration number in the process to reach the agreement statuses. Alternatively, this can be written as:

$$s_{i}^{(t+1)} = \begin{pmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ a_{n1} \ a_{n2} \ \cdots \ a_{nn} \end{pmatrix} \begin{pmatrix} \left(s_{1}^{e}\right)^{t} \\ \left(s_{2}^{e}\right)^{t} \\ \vdots \\ \left(s_{n}^{e}\right)^{t} \end{pmatrix}$$
(5)

The condition of reaching the agreement is that all the states of the individual agent members converge to the same limit when $t \to \infty$. Thus, the nonlinear evaluator of EDGM is given as:

$$s_{i}^{(t+1)} = \begin{cases} s_{1}^{(t+1)} = a_{11}s_{1}^{e} + a_{12}s_{2}^{e} + \dots + a_{1n}s_{n}^{e} \\ s_{2}^{(t+1)} = a_{21}s_{1}^{e} + a_{22}s_{2}^{e} + \dots + a_{2n}s_{n}^{e} \\ \vdots = \vdots + \vdots + \ddots + \vdots \\ s_{3}^{(t+1)} = a_{n1}s_{1}^{e} + a_{n2}s_{2}^{e} + \dots + a_{nn}s_{n}^{e} \end{cases}$$
(6)

If we look at equation (6), the equations have become nonlinear and the process remains easy to compute, where the difference between equation (3) and (6) is that the statuses have an exponent e.

IV. THEORETICAL RESULT

Theorem 1: Assume that a set of agents in MAS is discussing some ideas and exchange information among them by EDGM rule. It follows that MAS will reach a contract on a union value by exchanging their information if any of the agents starts with an idea in the positive case.

Proof: Allow a group of agents $(s_1^0, s_2^0, \ldots, s_n^0)$ to start with a random positive status where $0 \le s_i^0 \le 1$.

These agents communicate with each other by the rule of EDGM protocol distributions, which means that their ideas are powered e times. Additionally, when every member of the agents has exchanged its idea with its respective neighbor, the implication is that the agent's status has been multiplied by the connection value (edge value) of another agent with the high degree of e:

$$a_{ij} * (s_j^0)^e$$
 where $e \ge 2$ (7)

Thus, the initial statuses are given from zero to one, $0 \le s_i^0 \le 1$, meaning that the product of $(s_i^0)^e$ is approximately very close to zero.

$$a_{ij} * \left(s_j^0\right)^e \approx 0 \tag{8}$$

Consequently, the limit of $s_i^{(t+1)}$ using the evaluator of equation (6) makes the agents' limit to approximate to equals values.

Hence, $s_i^{(t+1)}$ is fixed and bounded and $(s_i^0)^e$ is also bounded.

Furthermore, since the $\lim_{t\to\infty} s_i^t$ are equal, then

$$\lim_{t\to\infty} d(s_i^t) = \lim_{t\to\infty} MAX(s_i^t)^e - \lim_{t\to\infty} MIN(s_i^t)^e = 0,$$

In turn, the s_i^0 converge to fixed values.

Corollary 1: It can be derived from Theorem 1 that since the e is large, the consensus is realized faster.

Proof: Allow the group of agent members $(s_1^0, s_2^0, \ldots, s_m^0)$ to start with ideas in random positive cases where $0 \le s_i^0 \le 1$.

By applying the EDGM, thus

$$\left(s_{j}^{0}\right)^{e} \tag{9}$$

This means that when e is bigger, s_j reaches a consensus faster.

V. SIMULATION RESULT

First, we start by showing the numerical analysis of EDGM and DGM.

The number of agents is considered here as three agents and the result is generalized to a finite number of agents. The initial statuses of agents are considered random and stochastic where $0 \le s_i \le 1$ and the sum of all s_i equals to one.

The transition matrix is tested for its various forms as follows:

FIGURE 1. Consensus of DGM and EDGM when e=1,000 for 1,000 agents.

Case 1: Transition matrix of non-stochastic (NSM) and non-symmetric (nonsym):

$$A_{ij} = \begin{pmatrix} 0.7 \ 0.4 \ 0.4 \\ 0.4 \ 0.2 \ 0.6 \\ 0.9 \ 0.9 \ 0.7 \end{pmatrix}$$

Case 2: Transition matrix of non-stochastic (NSM) and symmetric (sym):

$$A_{ij} = \left(egin{array}{c} 0.9 & 0.4 & 0.6 \ 0.4 & 0.8 & 0.5 \ 0.6 & 0.5 & 0.2 \end{array}
ight)$$

FIGURE 2. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 1 of non-stochastic (NSM) and non-symmetric (nonsym) for 100 agents in 100 times.

Case 3: Transition matrix of stochastic (SM) and non-symmetric (nonsym):

$$A_{ij} = \left(egin{array}{cccc} 0.25 & 0.5 & 0.25 \ 0.1 & 0.15 & 0.75 \ 0.3 & 0.1 & 0.6 \end{array}
ight)$$

Case 4: Transition matrix of stochastic (SM) and symmetric (sym):

$$A_{ij} = \begin{pmatrix} 0.4 \ 0.5 \ 0.1 \\ 0.5 \ 0.4 \ 0.1 \\ 0.1 \ 0.1 \ 0.8 \end{pmatrix}$$

Case 5: Transition matrix of doubly stochastic (DSM) and non-symmetric (nonsym):

$$A_{ij} = \begin{pmatrix} 0.4 \ 0.05 \ 0.55 \\ 0.1 \ 0.85 \ 0.05 \\ 0.5 \ 0.1 \ 0.4 \end{pmatrix}$$

symmetric (sym):

Case 6: Transition matrix of doubly stochastic (DSM) and

$$\Lambda_{ij} = \left(egin{array}{cccc} 0.9 & 0.05 & 0.05 \ 0.05 & 0.3 & 0.65 \ 0.05 & 0.65 & 0.3 \end{array}
ight)$$

Case 7: Transition matrix of stochastic (SM) and reducible:

$$A_{ij} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0.4 & 0.6 & 0 \end{pmatrix}$$

Case 8: Transition matrix of stochastic (SM) and periodic:

$$A_{ij} = \begin{pmatrix} 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 1 \ 0 \ 0 \end{pmatrix}$$

FIGURE 3. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 2 of non-stochastic (NSM) and symmetric (sym) tested for 100 agents in 100 times.

Case 9: Transition matrix of zeros:

$$A_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Case 10: Transition matrix of ones:

$$A_{ij} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Note that all transition matrices are examples for only three agents. However, the simulation for figures will be provided for 1,000 agents to show that the proposed model is worked for finite numbers of agents.

The result of the numerical analysis is shown in Figure 1 for the consensus of EDGM with e = 1,000 for 1,000 agents compared the original model of DGM under the transition matrix cases from 1 to 10 (as mentioned above). Furthermore, the x-axis in the graph represents the initial statuses between [0,1] for all agents; however, the y-axis represents the number of iterations made to reach a consensus. Each line in the graph represents one agent, and the consensus case appears in the end as one line, which means that it has reached a consensus.

The general DGM reaches a consensus only in cases (4, 5, 6, 9, and 10) where the transition matrix is SM-sym, DSM-nonsym, DSM-sym, zeros, or ones, and does not reach a consensus in cases (1, 2, 7, and 8) where the transition matrix is NSM-nonsym, NSM-sym, SM-reducible, or SM-periodic. However, even DGM has reached the consensus in cases (4, 5, 6, 9, and 10), but the process requires more time, which means that the cost of the process is very high. It can be seen that in cases (4, 5, and 6) shown in Figure 1 the consensus is reached after 15 iterations, while in case 10 the consensus converges to an unknown value. Nevertheless, EDGM reaches a

The Consensus of DGL in Stochastic and Nonsymmetric Matrix for 100 Agents

FIGURE 4. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber for transition matrix case 3 of stochastic (SM) and non-symmetric (nonsym) tested for 100 agents in 100 times.

consensus in all cases from [1-10] in the second iteration, which means that it reaches a consensus faster than DGM. In fact, the general DGM shows its weakness in reaching a consensus in periodic and reducible networks, as mentioned in [20]. For this reason, we propose the nonlinear control of EDGM that is able to reach a consensus in these cases. Note that all consensus cases of EDGM reach a consensus over a fixed value. Furthermore, the most significant aspect of the more efficient EDGM model is that it is a nonlinear model.

VI. COMPARING THE CONSENSUS OF RELATED WORKS WITH THE PROPOSED EDGM MODEL

It is worthwhile to examine the differences between our model and other research models. First, the purpose of this work is to study the leading consensus model, which is DeGroot model (DGM) [20]. The DGM consensus model is

an elastic process for communication in networks. It applies the concept of Markov chains, which is also considered as one of the most useful mathematical models and has many applications in models of real-world processes, such as studying control systems for auto vehicles. Furthermore, DGM incurs less computation cost to reach the consensus result. The main motivation for our work is to improve upon the DGM consensus model by introducing a new exponent for the model (EDGM). Through various case studies, we demonstrate that the proposed idea for DGM performs more efficiently and transfer the DGM model to a nonlinearity level. Looking at several existing works such as [1], [25], [26], [31]–[34], we observe that only [1] has extensively studied the problem MAS consensus problem and has suggested several applications. Reference [25] has provided a theoretical explanation for the Vicsek consensus model [17], which studied the behaviour of the motion of a swarm of

The Consensus of DGL in Stochastic and Symmetric Matrix for 100 Agents

FIGURE 5. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model transition for transition matrix case 4 of stochastic (SM) and symmetric (sym) tested for 100 agents in 100 times.

independent smart agents at the same speed, but with different heads. However, the Vicsek model is a linear system and has limited applications compared to the proposed EDGM model. Furthermore, [26] has studied the consensus model for three various networks: directed and fixed, directed and switching, and undirected faxed and switching, whereas this proposed model involves linear, complicated computation and has more restricted conditions for the transition matrix as well as to the flexible conditions of EDGM. A nonlinear consensus model has been considered in [31] for leader-based consensus but the model is complicated and also has restricted rules. A nonlinear operator of quadratic stochastic operators as investigated in [32] for the cooperation of MAS also involves complicated computation and restricted conditions compared to the proposed EDGM. Furthermore, another consensus controls neural networks and directed networks of MAS as proposed in [33], [34] includes complex nonlinear

osed in [33], [34]

functions. We can thus conclude that DGM possesses the most flexible system to solve the consensus problem. Since the proposed EDGM outperforms the DGM, it has to be considered as a more efficient and thus superior consensus model.

Also provided are comparisons of the qualitative and quantitative simulation experimental results to verify the validity of the proposed EDGM model to other related woks such as DGM [20], CSQO [32], DSQO [37], EDSQO [6], and the Olfati-Saber model [27].

We are now in the position to show the strength of our proposed model, which we compare to five popular models with the same style. Emphasis is placed on these models because they are considered the most flexible models for the consensus process. DGM is considered as the easiest and most flexible model of the consensus process. However, DGM and the other models have a consensus

The Consensus of DGL in Doubly Stochastic and Nonsymmetric Matrix for 100 Agents

FIGURE 6. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 5 of doubly stochastic (DSM) and non-symmetric (nonsym) tested for 100 agents in 100 times.

Name			Transition matrix									
		1- NSM- nonsym	2- NSM-sym	3- SM- nonsym	4- SM-sym	5- DSM- nonsym	6- DSM-sym	7- Reducible	8- Periodic			
1	DGM [20]	8	ø	11.68	35.59	52.27	52.27	ø	×			
2	EDGM (Proposed Model)	1	1	1	1	1	1	1	1			
3	CSQO [32]	8	∞	12.35	4.15	3.99	3.99	11.13	×			
4	DSQO [37]	8	∞	13.00	3.90	3.07	3.07	ø	×			
5	EDSQO [6]	8	ø	36.31	14.93	5.35	5.35	ø	×			
6	Olfati-Saber model [27]	8	ø	11.68	35.59	52.27	52.27	ø	Ø			

TABLE 1. An Average Number of Iterations in Quantitative Simulation Experimental Results for the consensus of EDSM Method Compared to DGM, CSQO, DSQO, EDSQO, and Olfati-Saber for 100 agents in 100 times.

problem in some cases, especially when the MAS communication (transition matrix) is non-stochastic, periodic and reducible. As part of this comparison, we highlight examples of such cases [1-8] of the transition matrix in the previous section to show the efficiency of our proposed EDGM model.

FIGURE 7. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 6 of doubly stochastic (DSM) and symmetric (sym) tested for 100 agents in 100 times.

Note that the transition matrix examples that have been mentioned in the previous section are for three agents only – the complete matrix cannot be displayed here due to its large size. However, the figure simulation is provided for 100 agents in 100 times test.

Furthermore, we can explain the lower efficiency of the compared models DGM, CSQO, DSQO, EDSQO, and Olfati-Saber by classifying them into: the first class of the models has easy computation but is linear such as DGM and Olfati-Saber model, and the second class is nonlinear but involves complicated computations such as CSQO, DSQO, and EDSQO. It is important to note here that in the nonlinear models of CSQO, DSQO, and EDSQO the transition matrix should be distributed into n matrices and each matrix should be n by n where n is the number of the agents in MAS. If we have 1,000 agents or more, the transition matrices are to be

FIGURE 8. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 7 of stochastic (SM) and reducible tested for 100 agents in 100 times.

TABLE 2. An Average Time Spent in Seconds in Quantitative Simulation Experimental Results for the consensus of DGM, CSQO, DSQO, EDSQO, and Olfati-Saber for 100 agents in 100 times.

	N.	Transition matrix										
Name		1- NSM- nonsym	2- NSM-sym	3- SM- nonsym	4- SM-sym	5- DSM- nonsym	6- DSM-sym	7- Reducible	8- Periodic			
1	DGM [20]	∞	×	1.85E-04	1.64E-04	1.77E-04	2.86E-04	×	∞			
2	EDGM (Proposed Model)	2.23E-04	1.66E-04	6.70E-05	4.62E-05	4.05E-05	4.99E-05	2.05E-04	3.35E-05			
3	CSQO [32]	∞	×	1.57E-04	5.20E-05	4.41E-05	6.61E-05	3.49E-04	8			
4	DSQO [37]	∞	×	1.48E-04	5.09E-05	4.15E-05	5.25E-05	×	8			
5	EDSQO [6]	∞	∞	1.91E-04	5.92E-05	4.48E-05	5.58E-05	×	~			
6	Olfati-Saber model [27]	×	×	1.48E-04	1.48E-04	1.61E-04	2.87E-04	×	~			

distributed for calculation will be many and thus complicate the process.

Based on this analysis we can confirm that the proposed EDGM model is more efficient than other models and is able to achieve consensus in the case of a non-stochastic, periodic and reducible transition matrix, it has only one distributed matrix, and is a nonlinear model.

Consequently, now some quantitative simulation experimental results of EDSM method are compared with DGM, CSQO, DSQO, EDSQO, and Olfati-Saber for 100 agents

FIGURE 9. Comparison of EDGM with DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber model for transition matrix case 8 of stochastic (SM) and periodic tested for 100 agents in 100 times.

in 100 tests time, based on eight types (cases [1-8]) of transition matrix. Tables 1 and 2 show the comparison of the average number of iterations and the average time spent in seconds respectively, for the consensus of DGM, EDSM (proposed model), CSQO, DSQO, EDSQO, and Olfati-Saber for cases 1-8 of the transition matrix as mentioned above in section V. In this experimental results, we can observe in Figures 2, 3, and 9 included the Tables 3, 4, 5, 6, 17 and 18 in

the Appendix section that the compared models of DGM, CSQO, DSQO, EDSQO, and Olfati-Saber do not achieve the consensus in cases 1, 2, and 8 of the transition matrix, while the consensus in the proposed EGM model can achieve it in only one iteration.

Moreover, in case 7 of the transition matrix DGM, DSQO, EDSQO, and Olfati-Saber do not achieve the consensus, while the proposed model EDGM and the CSQO achieve the

consensus where it has shown in Figure 8 and Tables 15 and 16 in the Appendix section. However, in this case the proposed EDGM model reaches the consensus faster, with an average of one iteration in 2.05E-04 seconds, as compared to CSQO with an average of 11.13 iterations in 3.49E-04 seconds. The average number of iterations and time has been tested here for 100 agents in 100 times.

Furthermore, in cases [3-6] of the transition matrices comparing all models, the proposed EDGM model reaches the consensus faster, as shown in Figures 4-7 and Tables 7-14 in the Appendix section, with the average of one iteration in 6.70E-05, 4.62E-05, 4.05E-05, and 4.99E-05 seconds for Cases 3, 4, 5, and 6 respectively, tested for 100 agents in 100 times, compared to the other models of DGM, CSOO, DSOO, EDSOO, and Olfati-Saber with the average of 11.68-36.31 iterations (Table 1) in 1.48E-04-1.91E-04 seconds (Table 2), for transition matrix Case 3, 4.15-35.59 iterations (Table 1) in 1.64E-04-1.64E-04 seconds (Table 2) for transition matrix case 4, 3.07-52.27 iterations (Table 1) in 1.77E-04-4.15E-05 seconds (Table 2) for the transition matrix Case 5, and 3.07-52.27 iterations (Table 1) in 5.25E-05-2.87E-04 seconds (Table 2) for transition matrix case 6.

From this quantitative analysis we can conclude that the proposed EDGM model is more efficient in achieving the consensus for MAS.

VII. CONCLUSION

The paper has discussed a famous DGM consensus model used in many applications. We have developed the model into a nonlinear model by means of an exponent degree. The proposed exponential DGM model is termed EDGM with respect to the consensus reached in MAS. Simulation analysis has been tested for 10 cases of the transition matrix, as it has been presented in the section discussing the simulation result. This investigation demonstrates that the proposed nonlinear distribution EDGM can be attributed to more efficient convergence for the consensus in MAS. Moreover, we have shown that the proposed EDGM is a nonlinear model, reaches a consensus faster, and achieves the consensus in all cases of the transition matrix [1-8] as compared to the consensus models of DGM, CSQO, DSQO, EDSQO, and the Olfati-Saber. The weakened of the compared models that either consensus cannot be achieved in these cases or some are linear models. or the reaching consensus is slow. We consider this as a significant contribution since the proposed consensus model, EDGM, has achieved the consensus under non-stochastic, reducible, and periodic networks, and faster which have been identified as a significant drawback of the other compared models. For future work, other possible applications for the proposed model of EDGM should be considered.

APPENDIX

Case 1: Transition matrix of non-stochastic (NSM) and non-symmetric (nonsym): (Figure 2)

TABLE 3.	Average Num	ber of Iteratio	ns in the Co	nsensus for
Non-stoch	nastic (NSM) a	nd Non-symm	ietric (nonsy	m) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	s	1	×	ø	ø	×
2	ø	1	×	ø	ø	×
3	ø	1	ø	ø	ø	ø
4	ø	1	×	ø	ø	×
5	s	1	×	ø	×	×
6	×	1	×	œ	ø	×
7	ø	1	ø	ø	ø	ø
8	ø	1	ø	ø	×	ø
9	ø	1	ø	ø	×	ø
10	ø	1	ø	ø	×	ø
11	8	1	8	ø	×	8
12	ø	1	ø	ø	ø	ø
13	8	1	8	8	ø	8
14	8	1	8	8	8	8
15	8	1	8	8	8	8
16	8	1	8	8	8	8
17	8	1	8	ø	ø	8
18	8	1	8	8	8	8
19	8	1	8	8	8	8
20	8	1	8	8	8	8
21	ø	1	ø	ø	~	ø
22	ø	1	ø	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ø
23	ø	1	ø	ø	ø	ø
24	ø	1	×	ø	ø	×
25	ø	1	ø	ø	ø	ø
26	ø	1	ø	ø	ø	ø
27	œ	1	ø	ø	ø	ø
28	ø	1	ø	ø	×	ø
29	00	1	∞	00	ø	∞
30	ø	1	ø	ø	ø	ø
31	ø	1	ø	ø	ø	ø
32	ø	1	ø	ø	×	ø
33	ø	1	ø	ø	×	ø
34	ø	1	∞	ø	∞	∞
35	ø	1	∞	ø	ø	∞
36	∞	1	∞	ø	ø	∞
37	∞	1	ø	œ	×	ø
38	∞	1	∞	∞	ø	∞
39	ø	1	∞	ø	×	ø
40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	∞

TABLE 3. (Continued.) Average Number of Iterations in the Consensus for Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

 TABLE 3. (Continued.) Average Number of Iterations in the Consensus for

 Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

41	8	1	8	8	∞	8
42	8	1	8	8	8	8
43	ø	1	ø	8	ø	ø
44	8	1	8	8	∞	8
45	ø	1	ø	8	ø	ø
46	8	1	8	8	ø	ø
47	8	1	8	8	∞	8
48	8	1	8	8	8	8
49	8	1	8	8	8	8
50	8	1	8	8	8	8
51	×	1	8	8	8	8
52	8	1	8	8	8	8
53	8	1	8	8	8	8
54	8	1	8	8	8	8
55	×	1	8	ø	8	ø
56	8	1	8	8	8	8
57	8	1	8	8	8	8
58	8	1	8	8	8	8
59	8	1	8	8	8	8
60	8	1	8	8	8	8
61	8	1	8	8	8	8
62	8	1	8	8	8	8
63	ø	1	8	8	8	ø
64	ø	1	8	00	8	ø
65	ø	1	ø	ø	8	ø
66	ø	1	ø	ø	ø	ø
67	ø	1	8	8	8	ø
68	ø	1	ø	ø	8	ø
69	ø	1	ø	ø	ø	ø
70	×	1	ø	ø	∞	ø
71	∞	1	ø	ø	∞	∞
72	∞	1	ø	ø	×	ø
73	×	1	ø	ø	∞	ø
74	×	1	ø	ø	ø	ø
75	∞	1	ø	ø	∞	ø
76	×	1	ø	ø	×	∞
77	×	1	ø	ø	ø	ø
78	ø	1	ø	ø	ø	∞
79	ø	1	ø	ø	~	∞
80	∞	1	ø	ø	∞	ø
81	∞	1	ø	ø	~	ø
82	8	1	8	8	8	00

83	8	1	8	8	8	8
84	8	1	8	8	8	8
85	8	1	8	8	8	8
86	8	1	8	8	8	8
87	8	1	8	8	8	8
88	8	1	8	8	8	8
89	8	1	8	8	8	8
90	8	1	8	8	8	8
91	8	1	8	8	8	8
92	8	1	8	8	8	8
93	8	1	8	8	8	8
94	8	1	8	8	8	8
95	8	1	8	8	8	8
96	8	1	8	8	8	8
97	8	1	8	8	8	8
98	8	1	8	8	8	8
99	8	1	8	8	8	8
100	∞	1	8	8	∞	8
Average	ø	1	×	8	ø	8

 TABLE 4. Average Time spent to achieve Consensus for Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	×	3.34E- 04	8	8	8	8
2	ø	2.96E- 04	8	8	8	8
3	×	3.59E- 04	8	8	8	8
4	8	3.20E- 04	8	8	8	8
5	8	1.63E- 04	8	8	8	8
6	ø	3.34E- 04	8	8	8	8
7	8	2.76E- 04	8	8	8	8
8	×	3.36E- 04	8	8	8	8
9	×	4.34E- 04	8	8	8	8
10	×	2.96E- 04	8	8	ø	8
11	8	5.78E- 04	8	8	8	8
12	×	2.16E- 04	8	8	8	8
13	×	2.41E- 04	8	8	8	8
14	×	1.63E- 04	8	∞	8	8
15	8	2.10E- 04	8	8	8	8

TABLE 4. (Continued.) Average Time spent to achieve Consensus for Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

16	×	1.90E- 04	∞	∞	∞	ø
17	×	1.96E- 04	ø	ø	×	ø
18	×	1.39E- 04	×	×	×	×
19	×	5.55E- 04	8	8	8	8
20	ø	2.12E- 04	8	8	8	8
21	ø	2.10E- 04	8	8	8	8
22	×	1.44E- 04	ø	ø	ø	ø
23	8	1.27E- 04	8	8	8	8
24	ø	1.42E- 04	8	8	8	8
25	ø	2.13E- 04	8	8	8	8
26	8	1.94E- 04	8	8	8	8
27	8	1.28E- 04	8	8	8	8
28	8	2.54E- 04	8	8	8	8
29	ø	1.73E- 04	8	8	8	8
30	ø	2.21E- 04	8	8	8	8
31	ø	2.06E- 04	8	8	8	8
32	ø	1.98E- 04	8	8	8	8
33	ø	2.03E- 04	8	8	8	8
34	œ	2.07E- 04	ø	ø	ø	ø
35	ø	1.88E- 04	ø	ø	ø	Ø
36	×	1.96E- 04	ø	ø	ø	∞
37	×	1.98E- 04	8	ø	ø	ø
38	×	1.47E- 04	ø	ø	ø	ø
39	×	2.66E- 04	ø	×	ø	∞
40	×	2.23E- 04	ø	Ø	ø	Ø
41	×	2.38E- 04	ø	ø	Ø	ø
42	×	2.00E- 04	Ø	Ø	Ø	Ø
43	×	1.90E- 04	8	8	ø	ø
44	×	2.27E- 04	ø	ø	Ø	Ø
45	×	2.97E- 04	ø	ø	ø	ø
46	×	1.84E- 04	ø	ø	ø	×
47	∞	1.39E- 04	ø	ø	ø	ø
48	∞	1.38E- 04	ø	ø	ø	ø
49	×	2.73E- 04	∞	∞	∞	∞

50	8	2.18E- 04	8	8	ø	ø
51	8	2.11E- 04	8	8	×	×
52	8	1.98E- 04	8	8	ø	×
53	ø	1.91E- 04	8	8	ø	ø
54	8	2.11E- 04	8	8	ø	ø
55	ø	1.43E-	8	8	ø	ø
56	ø	1.67E-	8	8	ø	ø
57	ø	1.55E-	ø	8	ø	ø
58	ø	2.20E-	8	8	œ	ø
59	s	2.07E-	ø	ø	œ	×
60	s	1.45E-	ø	ø	ø	ø
61	8	2.83E-	ø	ø	00	ø
62	×	1.47E-	œ	Ø	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
63	8	2.98E-	ø	ø	œ	ø
64	8	2.29E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞
65	8	04 2.27E-	8	8	ø	œ
66	8	04 2.28E-	8	8	ø	œ
67	~	1.73E-	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
68	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	04 2.09E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~
60		04 2.36E-				
69	∞	04	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	∞
70	∞	04	00	8	×	∞
71	×	2.80E- 04	ø	Ø	ø	×
72	×	2.15E- 04	ø	8	ø	ø
73	ø	2.91E- 04	œ	8	œ	×
74	8	2.24E- 04	ø	8	×	×
75	8	1.58E- 04	ø	8	8	×
76	8	1.61E- 04	ø	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
77	8	2.22E- 04	×	ø	ø	ø
78	8	2.36E- 04	ø	8	ø	8
79	∞	1.29E- 04	ø	8	ø	ø
80	ø	1.40E- 04	ø	8	ø	8
81	8	1.73E- 04	ø	8	ø	ø
82	ø	1.50E- 04	ø	ø	ø	ø
83	ø	1.15E- 04	ø	ø	ø	ø
84	×	1.32E- 04	œ	∞	œ	×

 TABLE 4. (Continued.) Average Time spent to achieve Consensus for Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix.

TABLE 5. (Continued.) Average Number of Iterations in the Consensus for

Non-stochastic (NSM) and Symmetric (sym) Matrix.

Average	8	2.23E- 04	ø	ø	ø	ø
100	8	2.89E- 04	ø	ø	ø	ø
99	8	3.15E- 04	8	8	8	8
98	×	4.73E- 04	8	8	8	∞
97	ø	3.34E- 04	8	8	8	ø
96	ø	1.41E- 04	8	8	8	8
95	×	1.27E- 04	8	8	8	8
94	s	1.30E- 04	ø	ø	8	8
93	×	1.47E- 04	∞	8	8	8
92	s	2.65E- 04	ø	ø	ø	×
91	×	2.32E- 04	∞	8	8	8
90	×	1.70E- 04	8	8	8	~
89	×	2.41E- 04	8	8	8	8
88	×	3.28E- 04	∞	8	8	8
87	ø	1.43E- 04	8	8	8	8
86	8	1.96E- 04	8	8	8	8
85	ø	2.58E- 04	8	8	8	8

TABLE 4. (Continued.) Average Time spent to achieve Consensus for Non-stochastic (NSM) and Non-symmetric (nonsym) Matrix. Т

Case 2: Transition matrix of non-stochastic (NSM) and symmetric (sym) (Figure 3)

TABLE 5. Average Number of Iterations in the Consensus for Non-stochastic (NSM) and Symmetric (sym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	8	1	8	8	×	×
2	8	1	8	s	×	8
3	8	1	8	s	×	8
4	8	1	×	ø	×	8
5	8	1	8	8	×	8
6	8	1	8	s	×	8
7	8	1	8	8	8	8
8	8	1	×	×	8	×
9	8	1	8	8	8	8
10	8	1	8	8	8	8
11	8	1	8	ø	8	ø
12	8	1	8	8	8	8
13	8	1	00	00	8	ø
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	00	ø	∞	∞
15	8	1	8	8	8	8
16	8	1	~	×	×	~

17	8	1	8	8	×	8
18	ø	1	ø	ø	∞	ø
19	00	1	8	8	×	8
20	8	1	8	8	8	8
21	00	1	8	8	~	8
22	ø	1	8	8	ø	8
23	ø	1	8	8	∞	8
24	ø	1	8	8	ø	8
25	ø	1	8	8	~	8
26	ø	1	8	8	∞	8
27	ø	1	8	8	8	8
28	ø	1	8	8	×	ø
29	8	1	8	8	×	8
30	8	1	8	8	×	8
31	×	1	8	8	×	8
32	×	1	8	8	×	ø
33	ø	1	ø	ø	×	ø
34	×	1	8	8	×	ø
35	ø	1	ø	ø	×	ø
36	ø	1	8	8	×	8
37	ø	1	8	8	×	ø
38	ø	1	ø	ø	×	ø
39	ø	1	8	8	ø	ø
40	ø	1	8	8	ø	8
41	ø	1	8	8	×	8
42	ø	1	8	8	×	8
43	8	1	8	8	8	8
44	ø	1	8	8	8	8
45	8	1	8	8	8	8
46	8	1	8	8	8	8
47	8	1	8	8	∞	8
48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	00	8	∞	∞
49	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	00	8	∞	8
50	8	1	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
51	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	8	8	∞	8
52	8	1	8	8	∞	8
53	8	1	8	8	∞	8
54	ø	1	8	8	∞	8
55	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	8	~	∞	8
56	×	1	8	8	∞	8
57	8	1	8	8	∞	8
58	ø	1	8	8	∞	8
59	8	1	8	8	∞	8

TABLE 5. (Continued.) Average Number of Iterations in the Consensus for Non-stochastic (NSM) and Symmetric (sym) Matrix.

60 1 ∞ 00 00 ∞ ∞ 61 ∞ 1 ∞ ∞ ∞ ∞ 1 62 ∞ ∞ ∞ ∞ ∞ 63 1 ∞ ∞ ∞ ∞ ∞ 64 1 ∞ ∞ ∞ ∞ ∞ 65 1 ∞ ∞ ∞ ∞ ∞ 66 ∞ 1 ∞ ∞ ∞ ∞ 67 1 ω ∞ ∞ ∞ ∞ 68 ∞ 1 ∞ ∞ ∞ ∞ 69 1 ∞ ∞ ∞ ∞ ∞ 70 ∞ 1 ∞ ∞ ∞ ∞ 71 1 ∞ ∞ ∞ ∞ ∞ 72 ∞ 1 ∞ ∞ ∞ ∞ 73 1 ∞ ∞ ∞ ∞ ∞ 74 ∞ 1 ∞ ∞ ∞ ∞ 75 ∞ 1 ∞ ∞ ∞ ∞ 76 1 ∞ ∞ ∞ ∞ ∞ 77 ∞ 1 ∞ ∞ ∞ ∞ 78 1 ∞ ∞ ∞ ∞ ∞ 79 ∞ 1 ∞ ∞ ∞ ∞ 80 1 ∞ ∞ ∞ ∞ ∞ 81 1 ∞ ∞ ∞ ∞ ∞ 82 1 ∞ ∞ ∞ ∞ ∞ 83 ∞ 1 ∞ ∞ ∞ s 84 ∞ 1 ∞ ∞ ∞ ∞ 85 1 ∞ ∞ ∞ ∞ ∞ 86 ∞ 1 ∞ ∞ ∞ ∞ 87 1 ∞ ∞ ∞ ∞ ∞ 88 ∞ 1 ∞ ∞ ∞ ∞ 89 ∞ 1 ∞ ∞ ∞ ∞ 90 1 ∞ ∞ ∞ ∞ ∞ 91 1 ∞ ∞ ∞ ∞ ∞ 92 1 ∞ ∞ ∞ ∞ ∞ 93 1 ∞ ∞ ∞ ∞ ∞ 94 ∞ 1 ∞ ∞ ∞ ∞ 95 ∞ 1 ∞ ∞ ∞ ∞ 96 ∞ 1 ∞ ∞ ∞ ∞ 97 ∞ 1 ∞ ∞ ∞ ∞ 98 1 ∞ ∞ ∞ ∞ ∞ 99 1 ∞ ∞ ∞ ∞ ∞ 1 100 ∞ ω ∞ ∞ ∞ Average ∞ 1 ∞ ∞ ø ∞

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	8	7.20E- 05	ø	8	8	8
2	∞	1.61E- 04	8	8	8	8
3	×	9.64E- 05	8	8	8	8
4	×	1.24E- 04	8	8	8	8
5	×	1.27E- 04	8	8	8	8
6	×	1.36E- 04	8	8	8	8
7	×	1.12E- 04	8	8	8	8
8	×	1.14E- 04	8	8	8	8
9	×	1.19E- 04	8	8	8	8
10	×	1.47E- 04	8	8	8	8
11	×	1.04E- 04	8	8	8	8
12	×	1.66E- 04	8	8	8	8
13	×	1.24E- 04	8	8	8	8
14	×	1.23E- 04	8	8	8	8
15	×	1.48E- 04	8	8	8	8
16	ø	1.36E- 04	ø	8	8	8
17	×	1.79E- 04	ø	8	ø	ø
18	~	2.17E- 04	ø	8	8	8
19	×	2.29E- 04	ø	8	ø	ø
20	8	1.80E- 04	8	8	8	8
21	×	1.22E- 04	ø	8	8	ø
22	8	1.46E- 04	8	8	8	8
23	8	1.29E- 04	8	8	8	8
24	8	1.15E- 04	8	8	8	8
25	8	2.20E- 04	8	8	8	8
26	×	2.33E- 04	8	8	8	8
27	∞	1.23E- 04	8	8	8	8
28	∞	1.45E- 04	8	8	8	8
29	×	1.20E- 04	8	8	8	8
30	×	1.23E- 04	8	8	8	8
31	×	1.41E- 04	8	8	8	8
32	×	1.49E- 04	ø	ø	ø	ø
33	8	1.08E- 04	8	8	8	8

TABLE 6. Average Time spent to achieve Consensus for Non-stochastic

(NSM) and Symmetric (sym) Matrix.

		-				
34	8	1.23E- 04	8	8	8	8
35	×	2.14E- 04	8	8	8	×
36	×	1.26E- 04	8	8	8	×
37	ø	1.46E- 04	8	8	8	×
38	ø	1.25E- 04	8	ø	8	×
39	ø	1.68E- 04	ø	ø	ø	×
40	ø	1.28E- 04	8	8	8	8
41	ø	1.22E- 04	8	ø	8	ø
42	×	1.31E- 04	ø	ø	×	ø
43	ø	1.10E- 04	8	8	8	×
44	×	1.15E- 04	8	8	8	×
45	×	1.48E- 04	ø	ø	ø	×
46	ø	1.18E- 04	ø	ø	×	×
47	ø	1.31E- 04	8	ø	8	8
48	ø	1.04E- 04	ø	ø	×	×
49	ø	1.26E- 04	8	8	8	8
50	ø	2.12E- 04	8	8	8	8
51	ø	1.54E- 04	8	8	8	8
52	ø	1.71E- 04	8	8	8	ø
53	×	1.30E- 04	8	8	8	×
54	×	1.10E- 04	8	8	8	×
55	ø	1.88E- 04	8	8	8	×
56	×	1.65E- 04	8	8	8	8
57	8	1.12E- 04	8	8	8	8
58	ø	2.34E- 04	8	8	8	×
59	ø	1.68E- 04	ø	ø	ø	ø
60	ø	1.28E- 04	ø	ø	ø	×
61	ø	2.30E- 04	8	8	ø	ø
62	∞	2.48E- 04	8	8	8	ø
63	∞	2.77E- 04	8	8	8	ø
64	ø	1.95E- 04	~	~	~	ø
65	ø	1.40E- 04	8	8	8	ø
66	~	1.92E- 04	8	ø	œ	ø
67	ø	1.30E- 04	8	8	8	ø
68	8	1.92E- 04	8	8	8	ø
69	ø	3.92E- 04	ŝ	ø	ø	×

TABLE 6.	(Continued.) Average Time spent to achieve Consensus for
Non-stoch	astic (NSM) and Symmetric (sym) Matrix.

TABLE 6. (Continued.) Average Time spent to achieve Consensus for Non-stochastic (NSM) and Symmetric (sym) Matrix.

70	ø	2.00E- 04	∞	œ	8	∞
71	8	2.19E- 04	8	ø	8	8
72	ø	7.15E- 04	8	ø	8	×
73	×	1.46E- 04	8	ø	8	8
74	×	1.45E- 04	8	ø	8	8
75	ø	1.12E- 04	8	ø	8	ø
76	8	2.10E- 04	8	8	8	8
77	ø	1.42E- 04	8	8	8	8
78	ø	2.33E- 04	8	8	8	8
79	×	1.22E- 04	∞	×	8	∞
80	8	1.40E- 04	8	8	8	8
81	ø	1.12E- 04	8	ø	8	8
82	ø	1.50E- 04	8	ø	8	8
83	ø	1.95E- 04	8	ø	8	ø
84	ø	2.06E- 04	8	ø	8	ø
85	ø	2.48E- 04	8	ø	8	ø
86	ø	2.25E- 04	8	ø	8	ø
87	ø	1.94E- 04	ø	œ	ø	ø
88	×	2.00E- 04	ø	ø	ø	ø
89	×	1.40E- 04	Ø	ø	ø	ø
90	ø	1.40E- 04	ø	ø	ø	ø
91	×	1.96E- 04	Ø	ø	Ø	ø
92	×	2.72E- 04	ø	×	×	ø
93	×	2.08E- 04	×	×	×	ø
94	∞	1.21E- 04	×	×	ø	×
95	∞	1.64E- 04	×	×	ø	×
96	∞	1.33E- 04	ø	ø	ø	ø
97	∞	1.43E- 04	8	ø	8	∞
98	∞	2.08E- 04	ø	ø	ø	ø
99	∞	1.73E- 04	ø	ø	ø	ø
100	∞	2.15E- 04	ø	ø	ø	ø
Average	ø	1.66E- 04	œ	œ	œ	ø

Case 3: Transition matrix of stochastic (SM) and non-symmetric (nonsym) (Figure 4)

 TABLE 7.
 Average Number of Iterations in the Consensus for

 Stochastic (SM) and Non-symmetric (nonsym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	11	1	13	14	38	11
2	12	1	14	14	39	12
3	12	1	12	13	36	12
4	10	1	12	12	34	10
5	12	1	12	14	38	12
6	12	1	12	12	32	12
7	12	1	12	12	32	12
8	13	1	12	14	37	13
9	11	1	12	12	35	11
10	11	1	13	12	35	11
11	11	1	12	13	35	11
12	13	1	13	14	38	13
13	12	1	12	14	38	12
14	11	1	13	14	40	11
15	12	1	13	14	39	12
16	12	1	13	14	39	12
17	11	1	13	14	39	11
18	11	1	12	12	34	11
19	11	1	13	12	36	11
20	12	1	12	12	36	12
21	13	1	12	12	34	13
22	13	1	12	13	36	13
23	12	1	12	13	36	12
24	11	1	13	12	36	11
25	10	1	11	11	31	10
26	12	1	12	13	35	12
27	12	1	12	12	36	12
28	11	1	12	12	29	11
29	11	1	13	14	38	11
30	11	1	12	13	35	11
31	11	1	12	12	33	11
32	10	1	11	12	35	10
33	12	1	13	14	41	12
34	12	1	13	14	39	12
35	11	1	13	12	34	11
36	11	1	12	12	35	11
37	15	1	13	14	41	15
38	11	1	12	13	37	11
39	11	1	13	14	38	11

40	11	1	13	14	45	11
41	11	1	12	14	38	11
42	15	1	12	12	33	15
43	12	1	13	14	39	12
44	11	1	13	14	41	11
45	10	1	12	12	33	10
46	11	1	11	12	19	11
47	11	1	14	13	38	11
48	11	1	12	12	31	11
49	10	1	10	11	32	10
50	14	1	13	14	37	14
51	11	1	12	13	37	11
52	11	1	13	14	40	11
53	13	1	13	14	47	13
54	12	1	12	14	36	12
55	10	1	11	12	35	10
56	12	1	12	12	33	12
57	12	1	12	14	37	12
58	11	1	12	13	34	11
59	11	1	13	12	25	11
60	12	1	12	12	37	12
61	13	1	13	13	37	13
62	11	1	12	13	35	11
63	12	1	13	14	42	12
64	12	1	12	14	36	12
65	11	1	12	12	36	11
66	11	1	12	13	36	11
67	16	1	12	13	35	16
68	11	1	13	14	39	11
69	12	1	12	13	38	12
70	12	1	12	12	35	12
71	13	1	13	14	40	13
72	12	1	12	13	36	12
73	11	1	11	12	35	11
74	12	1	13	14	49	12
75	12	1	12	13	36	12
76	14	1	12	13	36	14
77	11	1	12	12	28	11
78	11	1	12	13	38	11
79	11	1	14	13	35	11
80	11	1	13	14	39	11
81	14	1	14	13	37	14
82	11	1	12	12	34	11
83	11	1	12	13	37	11
84	11	1	13	12	36	11

TABLE 7. (Continued.) Average Number of Iterations in the Consensus for

Stochastic (SM) and Non-symmetric (nonsym) Matrix.

 TABLE 8. (Continued.) Average Time spent to achieve Consensus for

 Stochastic (SM) and Non-symmetric (nonsym) Matrix.

TABLE 7.	(Continued.) Average Number of Iterations in the Consensus for	or
Stochastic	c (SM) and Non-symmetric (nonsym) Matrix.	

85	11	1	12	13	37	11
86	11	1	12	14	37	11
87	11	1	12	14	38	11
88	11	1	12	13	36	11
89	11	1	12	12	35	11
90	12	1	12	14	38	12
91	12	1	12	13	34	12
92	12	1	13	14	36	12
93	12	1	12	12	37	12
94	13	1	13	14	39	13
95	12	1	12	13	40	12
96	13	1	13	14	39	13
97	11	1	13	14	36	11
98	11	1	12	13	36	11
99	11	1	12	13	36	11
100	14	1	13	12	36	14
Average	11.68	1.00	12.35	13.00	36.31	11.68

 TABLE 8.
 Average Time spent to achieve Consensus for Stochastic (SM) and Non-symmetric (nonsym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	0.0094	0.0024	0.0088	0.0089	0.0074	0.0068
2	6.18E-	2.20E-	3.03E-	8.39E-	9.96E-	3.44E-
2	05	05	05	05	05	05
3	4.13E-	3.02E-	4.27E-	5.71E-	8.41E-	5.15E-
5	05	05	05	05	05	05
4	6.95E-	3.69E-	1.56E-	4.34E-	9.83E-	5.98E-
-	05	05	04	05	05	05
5	2.15E-	5.42E-	8.34E-	5.91E-	1.87E-	2.22E-
5	04	05	05	05	04	04
6	6.13E-	3.90E-	5.29E-	4.71E-	9.56E-	9.57E-
0	05	05	05	05	05	05
7	9.76E-	3.64E-	5.55E-	5.09E-	9.73E-	6.64E-
7	05	05	05	05	05	05
0	8.90E-	4.37E-	5.82E-	5.78E-	1.53E-	1.08E-
0	05	05	05	05	04	04
0	7.05E-	4.69E-	6.08E-	5.05E-	1.05E-	6.48E-
9	05	05	05	05	04	05
10	7.43E-	3.34E-	5.16E-	4.32E-	9.17E-	5.76E-
10	05	05	05	05	05	05
11	6.42E-	3.06E-	4.47E-	4.32E-	9.63E-	5.58E-
11	05	05	05	05	05	05
12	8.98E-	4.07E-	6.12E-	5.36E-	1.24E-	1.32E-
12	05	05	05	05	04	04
12	8.98E-	3.95E-	5.97E-	5.39E-	1.55E-	6.53E-
15	05	05	05	05	04	05
14	5.44E-	3.77E-	6.11E-	5.25E-	1.15E-	8.33E-
14	05	05	05	05	04	05
15	8.43E-	3.72E-	5.77E-	5.39E-	1.10E-	5.85E-
15	05	05	05	05	04	05
16	1.62E-	3.64E-	5.76E-	5.20E-	1.17E-	6.76E-
10	04	05	05	05	04	05
17	1.07E-	3.90E-	5.32E-	4.93E-	1.62E-	7.18E-
17	04	05	05	05	04	05
18	8.69E-	4.03E-	6.45E-	5.19E-	2.05E-	6.55E-
10	05	05	05	05	04	05

19	9.14E-	4.10E-	6.22E-	5.02E-	1.27E-	8.25E-
	05	05	05	05	04	05
20	1.74E-	7.20E-	1.01E-	9.69E-	3.61E-	1.51E-
	1 22 E	03 4 56E	04 6.64E	5.62E	1 50E	04 7.65E
21	04	4.301-	0.0412-	05	04	7.05E-
	1 11F-	6.65E-	6.00F-	5.95E-	1 27E-	6.95F-
22	04	0.051	0.001	05	04	0.551
22	5.57E-	3.79E-	5.46E-	6.12E-	1.36E-	6.65E-
23	05	05	05	05	04	05
24	5.60E-	4.47E-	8.82E-	5.28E-	1.14E-	8.99E-
24	05	05	05	05	04	05
25	1.22E-	3.47E-	4.75E-	4.40E-	9.25E-	6.42E-
23	04	05	05	05	05	05
26	9.03E-	3.40E-	4.74E-	4.67E-	1.32E-	6.53E-
	05	05	05	05	04	05
27	8./9E-	3.62E-	6.0/E-	5.24E-	1.24E-	7.19E-
	5 88E	03 4 17E	5.48E	5 18E	0.22E	6 75E
28	05	4.1712-	05	05	9.2215-	0.75E-
	7 00E-	6.06E-	6 90E-	6 31E-	2.73E-	7.21E-
29	05	05	05	05	04	05
20	6.27E-	4.26E-	6.80E-	6.06E-	2.52E-	7.84E-
30	05	05	05	05	04	05
21	1.60E-	5.33E-	7.01E-	5.08E-	8.84E-	6.46E-
51	04	05	05	05	05	05
32	6.41E-	4.34E-	9.37E-	6.15E-	1.05E-	7.12E-
52	05	05	05	05	04	05
33	6.35E-	4.05E-	6.21E-	8.21E-	1.07E-	1.20E-
	05	05	05	05	04	04
34	7.03E-	5.39E-	9.08E-	5.49E-	1.05E-	/.21E-
	0.57E-	7.08E-	7 24E-	6.05E-	1 23E-	1 10E-
35	05	05	05	0.05	04	04
26	9.70E-	4.35E-	6.83E-	6.60E-	1.45E-	1.53E-
36	05	05	05	05	04	04
27	8.76E-	5.61E-	7.64E-	9.70E-	1.23E-	1.52E-
57	05	05	05	05	04	04
38	1.16E-	4.64E-	9.29E-	5.91E-	9.68E-	7.04E-
50	04	05	05	05	05	05
39	1.56E-	4.02E-	6.68E-	8.37E-	1.08E-	1.10E-
	6.12E	4 27E	1.00E	5.60E	1 10E	1.02E
40	0.121-	4.270-	04	05	04	04
	1.60E-	4.16E-	7.64E-	5.70E-	1.27E-	9.38E-
41	04	05	05	05	04	05
42	1.19E-	6.02E-	9.38E-	8.11E-	1.02E-	9.45E-
42	04	05	05	05	04	05
43	9.46E-	3.63E-	9.28E-	5.23E-	9.67E-	7.13E-
	05	05	05	05	05	05
44	9.82E-	4.08E-	6.69E-	5.41E-	1.04E-	6.84E-
	05 5 5 1 E	05 5.41E	0.42E	05 8 05E	04 1.01E	7.740
45	05	05	9.42E- 05	0.05E-	1.01E- 04	05
	6.61F-	4 05F-	6.00F-	7 66F-	6 57F-	7 34F-
46	05	05	05	05	05	05
47	6.39E-	5.40E-	1.02E-	5.95E-	9.88E-	9.18E-
47	05	05	04	05	05	05
48			5 1 A F	4 01E	1 49E	0.12E
-+0	1.42E-	3.70E-	5.13E-	4.91E-	1.40C-	9.12E-
	1.42E- 04	3.70E- 05	5.13E- 05	4.91E- 05	1.48E- 04	9.12E- 05
49	1.42E- 04 7.24E-	3.70E- 05 4.22E-	5.13E- 05 6.96E-	4.91E- 05 7.51E-	04 8.48E-	9.12E- 05 7.11E-
49	1.42E- 04 7.24E- 05	3.70E- 05 4.22E- 05	5.13E- 05 6.96E- 05	4.91E- 05 7.51E- 05	04 8.48E- 05	9.12E- 05 7.11E- 05
49 50	1.42E- 04 7.24E- 05 1.48E- 04	3.70E- 05 4.22E- 05 4.22E- 05	5.13E- 05 6.96E- 05 5.09E- 05	4.91E- 05 7.51E- 05 4.74E- 05	04 8.48E- 05 8.53E- 05	9.12E- 05 7.11E- 05 6.56E- 05
49 50	1.42E- 04 7.24E- 05 1.48E- 04 5.53E-	3.70E- 05 4.22E- 05 4.22E- 05 3.38E-	5.13E- 05 6.96E- 05 5.09E- 05 5.21E-	4.91E- 05 7.51E- 05 4.74E- 05	1.48E- 04 8.48E- 05 8.53E- 05 8.37E-	9.12E- 05 7.11E- 05 6.56E- 05 5.47E-
49 50 51	1.42E- 04 7.24E- 05 1.48E- 04 5.53E- 05	3.70E- 05 4.22E- 05 4.22E- 05 3.38E- 05	5.13E- 05 6.96E- 05 5.09E- 05 5.21E- 05	4.91E- 05 7.51E- 05 4.74E- 05 1.04E- 04	1.48E- 04 8.48E- 05 8.53E- 05 8.37E- 05	9.12E- 05 7.11E- 05 6.56E- 05 5.47E- 05
49 50 51	1.42E- 04 7.24E- 05 1.48E- 04 5.53E- 05 9.09E-	3.70E- 05 4.22E- 05 4.22E- 05 3.38E- 05 3.55E-	5.13E- 05 6.96E- 05 5.09E- 05 5.21E- 05 5.31E-	4.91E- 05 7.51E- 05 4.74E- 05 1.04E- 04 7.01E-	1.48E- 04 8.48E- 05 8.53E- 05 8.37E- 05 9.75E-	9.12E- 05 7.11E- 05 6.56E- 05 5.47E- 05 6.32E-
49 50 51 52	1.42E- 04 7.24E- 05 1.48E- 04 5.53E- 05 9.09E- 05	3.70E- 05 4.22E- 05 4.22E- 05 3.38E- 05 3.55E- 05	5.13E- 05 6.96E- 05 5.09E- 05 5.21E- 05 5.31E- 05	4.91E- 05 7.51E- 05 4.74E- 05 1.04E- 04 7.01E- 05	1.48E- 04 8.48E- 05 8.53E- 05 8.37E- 05 9.75E- 05	9.12E- 05 7.11E- 05 6.56E- 05 5.47E- 05 6.32E- 05
49 50 51 52 53	1.42E- 04 7.24E- 05 1.48E- 04 5.53E- 05 9.09E- 05 9.70E-	3.70E- 05 4.22E- 05 4.22E- 05 3.38E- 05 3.55E- 05 3.75E-	5.13E- 05 6.96E- 05 5.09E- 05 5.21E- 05 5.31E- 05 6.05E-	4.91E- 05 7.51E- 05 4.74E- 05 1.04E- 04 7.01E- 05 7.96E-	1.48E- 04 8.48E- 05 8.53E- 05 8.37E- 05 9.75E- 05 1.20E-	9.12E- 05 7.11E- 05 6.56E- 05 5.47E- 05 6.32E- 05 7.12E-

TABLE 8. (Continued.) Average Time spent to achieve Consensus for Stochastic (SM) and Non-symmetric (nonsym) Matrix.

54	8.39E-	3.78E-	9.14E-	7.59E-	1.38E-	8.73E-
	05 7.04E	05 3.05E	05 5.76E	05 5.76E	04 1.07E	05 6 77E
55	05	05	05	05	04	0.7712-
	8.31E-	4.34E-	6.29E-	5.01E-	1.29E-	9.94E-
56	05	05	05	05	04	05
57	6.73E-	4.02E-	5.76E-	8.13E-	9.20E-	6.87E-
57	05	05	05	05	05	05
58	9.94E-	5.92E-	9.38E-	5.18E-	9.43E-	6.67E-
	05	05	05	05	05	05
59	5.85E-	5.56E- 05	6.39E-	5./4E- 05	/.16E- 05	7.07E- 05
	945E-	4 44E-	8.07E-	7 53E-	1 01E-	7 36E-
60	05	05	0.0712	05	04	05
69	7.83E-	3.77E-	5.55E-	5.30E-	9.36E-	6.83E-
	05	05	05	05	05	05
70	5.50E-	4.10E-	7.27E-	4.94E-	8.55E-	6.86E-
	03 7 12E	03 4 03E	03 5.73E	5 30E	0.43E	03 6.06E
71	05	4.03E- 05	05	05	9.43E- 05	0.00E-
	1.11E-	3.74E-	5.00E-	4.31E-	7.91E-	6.05E-
72	04	05	05	05	05	05
72	1.27E-	4.10E-	5.55E-	5.21E-	8.49E-	6.65E-
/3	04	05	05	05	05	05
74	9.82E-	4.80E-	6.11E-	6.06E-	2.57E-	7.33E-
	05	05	05	05	04	05
75	/.52E-	3.98E-	5.61E-	5.02E-	8.6/E-	7.05E-
	5 47E-	3 46F-	4 60F-	4 56E-	8 49F-	5 90E-
76	05	05	05	05	0.45	05
77	6.42E-	3.10E-	5.09E-	4.00E-	7.09E-	5.27E-
//	05	05	05	05	05	05
78	7.24E-	4.07E-	5.71E-	4.88E-	1.10E-	6.02E-
,,,	05	05	05	05	04	05
79	9.01E-	3.89E-	9.11E-	5.92E-	8.94E-	6.66E-
	8.40E-	4 76E-	5 39E-	4 89E-	1 32E-	6.68E-
80	0.401-	4.70L- 05	05	05	04	0.001-
0.1	5.07E-	3.17E-	4.87E-	4.15E-	8.29E-	5.79E-
81	05	05	05	05	05	05
82	6.62E-	3.20E-	5.04E-	4.40E-	1.87E-	5.94E-
02	05	05	05	05	04	05
83	7.42E-	5.34E-	6.50E-	1.23E-	1.02E-	7.18E-
	05 5.62E	05 2.02E	05 6 22E	196E	04 1 28E	05 7 15E
84	05	05	0.22E-	04	04	05
0.5	5.88E-	3.65E-	7.05E-	4.31E-	8.91E-	8.82E-
85	05	05	05	05	05	05
86	6.73E-	3.39E-	5.75E-	4.12E-	8.93E-	5.90E-
	05	05	05	05	05	05
87	5.91E-	4.08E-	5.38E-	4.90E-	8.86E-	5.81E-
	6.68E-	3 22F_	5 90F-	4.63E-	8 78F-	9.82F-
88	0.081-	05	05	05	05	05
80	8.99E-	5.84E-	2.83E-	6.60E-	1.06E-	8.15E-
09	05	05	04	05	04	05
90	6.54E-	3.24E-	1.19E-	3.70E-	7.29E-	5.63E-
	05 6 11E	2.825	04 4.46E	05 4 52E	05 1.25E	05 6.56E
91	0.11E- 05	3.82E- 05	4.40£- 05	4.55E- 05	1.23E- 04	0.30E- 05
	8.33E-	3.83E-	6.96E-	4.52E-	1.20E-	8.76E-
92	05	05	05	05	04	05
02	1.21E-	6.70E-	9.73E-	5.27E-	1.48E-	1.34E-
73	04	05	05	05	04	04
94	3.14E-	4.37E-	5.91E-	5.47E-	1.06E-	2.27E-
	04	2.605	05	2 775	0.24	04 5.27E
95	2.00E- 04	3.09E- 05	4.21E- 05	3.77E- 05	9.24E- 05	3.37E- 05
1	7	~~~	05	00	05	~ ~ ~

06	1.02E-	4.43E-	4.49E-	5.14E-	9.65E-	7.21E-
96	04	05	05	05	05	05
07	7.16E-	6.42E-	8.55E-	7.52E-	1.35E-	6.88E-
97	05	05	05	05	04	05
00	1.40E-	6.32E-	8.85E-	8.45E-	1.67E-	6.85E-
98	04	05	05	05	04	05
00	7.80E-	5.19E-	7.85E-	7.03E-	1.63E-	1.15E-
99	05	05	05	05	04	04
100	1.08E-	5.87E-	5.18E-	7.01E-	1.04E-	9.56E-
100	04	05	05	05	04	05
Avenage	1.85E-	6.70E-	1.57E-	1.48E-	1.91E-	1.48E-
Average	04	05	04	04	04	04

TABLE 8. (Continued.) Average Time spent to achieve Consensus for

Stochastic (SM) and Non-symmetric (nonsym) Matrix.

Case 4: Transition matrix of stochastic (SM) and symmetric (sym) (Figure 5)

TABLE 9.	Average Nui	mber of Iterati	ons in the	Consensus	fo
Stochastic	: (SM) and Sy	ymmetric (sym) Matrix.		

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	31	1	3	3	12	31
2	38	1	4	4	14	38
3	37	1	4	3	14	37
4	32	1	4	4	14	32
5	34	1	3	3	13	34
6	23	1	5	5	17	23
7	39	1	4	4	15	39
8	34	1	4	4	14	34
9	32	1	4	4	16	32
10	29	1	4	4	14	29
11	36	1	5	5	17	36
12	36	1	3	3	13	36
13	40	1	4	4	16	40
14	39	1	4	3	15	39
15	38	1	4	3	14	38
16	36	1	4	4	15	36
17	37	1	4	4	15	37
18	34	1	5	5	18	34
19	35	1	4	4	14	35
20	37	1	4	4	14	37
21	37	1	5	4	16	37
22	29	1	5	5	17	29
23	38	1	4	3	14	38
24	40	1	4	4	16	40
25	37	1	4	4	13	37
23	38	1	4	3	14	38
24	40	1	4	4	16	40
25	37	1	4	4	13	37
26	27	1	5	5	17	27

 TABLE 9. (Continued.) Average Number of Iterations in the Consensus for

 Stochastic (SM) and Symmetric (sym) Matrix.

 TABLE 9. (Continued.) Average Number of Iterations in the Consensus for

 Stochastic (SM) and Symmetric (sym) Matrix.

27	32	1	5	5	18	32
28	36	1	4	4	16	36
29	35	1	4	4	16	35
30	31	1	3	3	12	31
31	38	1	4	4	11	38
32	37	1	4	4	15	37
33	38	1	4	4	13	38
34	31	1	4	4	14	31
35	32	1	3	3	12	32
36	35	1	4	4	15	35
37	34	1	4	4	14	34
38	30	1	5	5	17	30
39	40	1	5	4	18	40
40	39	1	4	4	16	39
41	40	1	5	4	16	40
42	36	1	4	3	12	36
43	36	1	5	5	17	36
44	33	1	4	4	15	33
45	38	1	4	4	15	38
46	35	1	4	4	14	35
47	31	1	4	4	16	31
48	33	1	3	3	13	33
49	36	1	4	4	14	36
50	39	1	5	4	16	39
51	38	1	4	3	14	38
52	38	1	4	3	14	38
53	34	1	5	5	19	34
54	34	1	4	4	14	34
55	29	1	4	4	16	29
56	37	1	4	4	14	37
57	35	1	5	5	19	35
58	37	1	4	4	14	37
59	40	1	5	4	17	40
60	36	1	5	4	16	36
61	39	1	4	4	16	39
62	36	1	4	4	15	36
63	35	1	5	5	22	35
64	27	1	3	3	12	27
65	37	1	4	4	15	37
66	37	1	4	4	15	37
67	36	1	4	4	13	36
68	36	1	4	3	12	36

69	36	1	4	3	14	36
70	39	1	4	3	15	39
71	37	1	4	3	14	37
72	36	1	3	3	13	36
73	32	1	4	4	14	32
74	39	1	4	4	16	39
75	32	1	5	5	17	32
76	37	1	4	4	14	37
77	36	1	5	5	19	36
78	38	1	4	3	14	38
79	33	1	4	4	16	33
80	37	1	4	4	14	37
81	35	1	5	5	17	35
82	38	1	4	4	13	38
83	38	1	4	4	15	38
84	35	1	4	4	16	35
85	37	1	4	4	14	37
86	32	1	3	3	12	32
87	40	1	5	4	16	40
88	38	1	4	4	15	38
89	36	1	4	3	13	36
90	36	1	5	5	16	36
91	36	1	5	4	16	36
92	36	1	5	5	17	36
93	40	1	5	4	17	40
94	36	1	4	4	13	36
95	38	1	4	3	15	38
96	38	1	4	3	14	38
97	38	1	4	4	14	38
98	35	1	3	3	12	35
99	36	1	4	4	14	36
100	38	1	4	3	15	38
Average	35.59	1	4.15	3.90	14.93	35.59

TABLE 10.	Average time Spen	t to achieve	Consensus f	or Stochastic (SM)
and Symm	etric (sym) Matrix.				

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	8.18E-	1.84E-	3.67E-	2.18E-	3.67E-	4.41E-
	05	05	05	05	05	05
2	2.09E-	6.25E-	8.99E-	6.32E-	8.80E-	1.74E-
	04	05	05	05	05	04
3	3.03E-	8.46E-	1.04E-	8.76E-	1.09E-	3.25E-
	04	05	04	05	04	04
4	2.38E-	9.25E-	7.39E-	8.72E-	6.74E-	2.27E-
	04	05	05	05	05	04

TABLE 10. (Continued.) Average time Spent to achieve Consensus for Stochastic (SM) and Symmetric (sym) Matrix.

5	1.55E-	4.60E-	4.65E-	5.03E-	6.92E-	1.33E-
-	04	05	05	05	05	04
6	1.84E-	5.13E-	5.41E-	5.42E-	9.20E-	1.04E-
	04	05	05	05	05	04
7	1.24E-	3.81E-	4.01E-	3.93E-	4.89E-	1.27E-
	04	05	05	05	05	04
8	9.28E-	3.15E-	3.50E-	3.56E-	3.90E-	9.33E-
_	05	05	05	05	05	05
9	7.87E-	3.16E-	3.56E-	3.28E-	3.77E-	8.64E-
-	05	05	05	05	05	05
10	1.56E-	6.83E-	5.75E-	7.07E-	5.81E-	1.14E-
	04	05	05	05	05	04
11	1.28E-	3.97E-	4.48E-	5.53E-	4.82E-	1.49E-
	04	05	05	05	05	04
12	1.24E-	2.76E-	2.84E-	2.90E-	3.35E-	1.09E-
	04	05	05	05	05	04
13	1.63E-	3.96E-	4.38E-	4.37E-	5.85E-	1.15E-
	04	05	05	05	05	04
14	1.12E-	2.78E-	2.83E-	2.84E-	3.09E-	8.57E-
	04	05	05	05	05	05
15	1.56E-	3.93E-	7.00E-	6.20E-	5.19E-	1.24E-
	04	05	05	05	05	04
16	1.91E-	3.75E-	4.13E-	3.86E-	4.8/E-	1.38E-
	0.055	2.025	2.275	2.095	2.211	0.005
17	9.05E-	3.02E-	3.3/E-	3.08E-	3.31E-	9.09E-
	2.41E	4.02E	03	4 2015	03 5.00E	05 1 1 1 E
18	2.41E-	4.03E-	0.35E-	4.39E-	5.09E-	1.11E-
	04	2.915	2.275	2.005	05 2.9(E	0.4
19	0.52E- 05	2.01E- 05	5.57E- 05	5.00E- 05	5.60E-	9.00E-
	1 55E-	3.84F-	4 04E-	3.62E-	8.83E-	1.04E-
20	04	05	05	05	05	04
	2.03E-	4.09E-	4.78E-	4.20E-	5.49E-	1.16E-
21	04	05	05	05	05	04
22	2.22E-	5.86E-	6.65E-	6.55E-	5.50E-	1.69E-
22	04	05	05	05	05	04
23	2.11E-	5.00E-	7.38E-	5.38E-	7.85E-	1.65E-
25	04	05	05	05	05	04
24	1.39E-	3.46E-	3.58E-	3.75E-	3.74E-	1.04E-
	04	05	05	05	05	04
25	1.96E-	4.23E-	4.49E-	5.66E-	4.89E-	1.83E-
	1.100	03 5 00E	03 5.04E	03 5 2(E	03 5.50E	1.01E
26	1.10E- 04	5.90E-	5.04E-	3.20E-	5.50E-	1.91E- 04
	1 10E	2 50E	2.55E	4 02E	05 4.67E	1 60E
27	1.19E- 04	5.50E- 05	5.55E- 05	4.03E-	4.07E-	1.00E-
	0.80E	2 05	3 26E	4 50E	3 57E	8 75E
28	05	2.98L- 05	05	4.50L-	05	0.751-
	9.78E_	3 14E-	2.83E-	2 98E-	3 52E-	8.01E-
29	05	05	05	2.96L 05	05	0.0112
	1.52E-	4.58E-	4.93E-	7.05E-	8.66E-	1.44E-
30	04	05	05	05	05	04
21	1.29E-	3.98E-	3.62E-	3.83E-	3.74E-	9.79E-
31	04	05	05	05	05	05
32	1.61E-	3.45E-	3.72E-	3.96E-	3.98E-	1.06E-
52	04	05	05	05	05	04
33	1.61E-	5.11E-	5.04E-	4.41E-	4.53E-	2.10E-
55	04	05	05	05	05	04
34	8.45E-	2.91E-	3.35E-	5.67E-	4.66E-	8.79E-
	05	05	2.00	2.055	2.075	05
35	7.50E- 05	2.03E-	2.96E- 05	3.05E-	3.2/E- 05	7.54E-
	1 3/E	4 22E	6.22E	03 1 81E	7 300	1.810
36	1.34E- 04	4.23E- 05	0.25E-	4.01E-	7.50E-	04
	9 39F_	3 44F-	3 97F-	391F-	6 50F-	1 13F-
37	05	05	05	05	05	04
	1.02E-	2.68E-	3.07E-	3.17E-	3.38E-	8.03E-
38	04	05	05	05	05	05
20	1.28E-	4.39E-	6.31E-	5.94E-	5.22E-	1.29E-
39	04	05	05	05	05	04

40	1.01E-	3.34E-	3.85E-	4.16E-	4.89E-	1.15E-
41	1.35E-	4.16E-	4.84E-	4.34E-	4.78E-	2.10E-
41	04	05	05	05	05	04
42	2.66E- 04	5.75E- 05	6.64E- 05	6.40E- 05	6.72E- 05	4.14E- 04
43	1.78E-	5.62E-	5.73E-	5.47E-	9.92E-	1.90E-
	04 2.00E	05 4 52E	05 4 02E	05 4.66E	05	04 1.21E
44	04	4.32E- 05	4.9215-	4.001-	05	04
45	1.42E-	6.47E-	7.01E-	5.21E-	8.13E-	2.44E-
16	1.85E-	7.26E-	6.02E-	6.33E-	7.98E-	3.64E-
46	04	05	05	05	05	04
47	2.65E- 04	7.22E- 05	8.68E- 05	7.08E- 05	8.33E- 05	2.19E- 04
48	9.74E-	3.82E-	5.48E-	4.41E-	4.27E-	9.71E-
	05 1.60E-	05 3.87E-	05 3.84E-	05 3.96E-	05 4.35E-	05 1.12E-
49	04	05	05	05	05	04
50	1.42E- 04	3.86E- 05	4.97E- 05	6.05E- 05	6.28E- 05	1.34E- 04
51	9.52E-	3.33E-	3.77E-	4.81E-	4.21E-	9.86E-
51	05 1 31E-	05 3 76E-	05 4 25E-	05 4 84E-	05 4 16E-	05 1 10E-
52	04	05	05	05	05	04
53	1.15E-	3.27E-	3.86E-	3.72E-	4.58E-	9.77E-
54	3.07E-	3.92E-	3.70E-	3.78E-	5.62E-	1.09E-
54	04	05	05	05	05	04
55	8.83E- 05	05	3.50E- 05	3.67E- 05	5.60E- 05	9.09E- 05
56	3.85E-	6.94E-	9.34E-	5.72E-	8.33E-	1.80E-
	04 1.12E-	05 3.86E-	05 4.46E-	05 3.92E-	4.52E-	04 1.14E-
57	04	05	05	05	05	04
58	1.96E- 04	4.21E- 05	6.07E- 05	5.07E- 05	4.84E- 05	1.88E- 04
59	2.84E-	5.31E-	6.90E-	4.62E-	4.98E-	1.40E-
	04 1.58E-	05 4.71E-	05 7.97E-	05 5.77E-	05 8.27E-	04 1.95E-
60	04	05	05	05	05	04
61	2.39E- 04	3.26E- 05	3.42E- 05	3.08E- 05	3.65E- 05	9.38E- 05
62	6.47E-	7.10E-	8.29E-	7.30E-	9.91E-	1.97E-
	04 1 12E-	05 5.67E-	05 4 97E-	05 4 78F-	05 9.69E-	04 1 90E-
63	04	05	05	05	05	04
64	9.69E-	4.33E-	4.73E-	4.94E-	4.91E-	1.48E-
65	1.18E-	4.02E-	6.10E-	4.14E-	4.86E-	1.08E-
- 05	04	05	05 5.82E	05 5 24E	05	04 2.14E
66	04	0.50E- 05	05	05	05	04
67	1.73E-	5.63E-	4.33E-	5.70E-	7.42E-	2.22E-
69	2.32E-	6.16E-	6.69E-	5.39E-	5.45E-	1.18E-
08	04	05	05	05	05	04 1.21E
69	04	05	05	05	0.00 <u>L</u> - 05	04
70	4.37E-	9.76E-	9.62E-	8.48E-	2.82E-	3.57E-
71	1.16E-	4.22E-	4.72E-	5.84E-	7.65E-	1.75E-
/1	04	05	05	05	05	04
72	04	4.65E- 05	05	05	0.96E- 05	04
73	2.26E-	4.90E-	5.40E-	4.70E-	5.30E-	1.76E-
	04 2.14E-	05 4.80E-	05 7.32E-	05 5.21E-	05 7.78E-	04 1.41E-
74	04	05	05	05	05	04
75	2.23E- 04	3.86E- 05	3.73E- 05	3.91E- 05	4.33E- 05	9.83E- 05
h						•

TABLE 10. (Continued.) Average time Spent to achieve Consensus for

 Stochastic (SM) and Symmetric (sym) Matrix.

92 93 94 95 96 97 98 99 99 100	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.54E- 04 1.46E- 04 8.31E- 05 1.64E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05 3.17E- 05 7.59E- 05 4.2E-	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E- 05 3.56E- 05 7.81E- 05 5.20E	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 3.46E- 05 1.69E- 04 4.78E- 05 1.03E- 05	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E- 05 5.39E- 05 9.09E- 05 5 5.3 E-	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E- 05 9.36E- 05 2.66E- 04
92 93 94 95 96 97 98 99 99 100	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.46E- 04 8.31E- 05 1.64E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05 3.17E- 05 7.59E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E- 05 3.56E- 05 7.81E- 05	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E- 04 4.78E- 05 1.03E- 04	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E- 05 5.39E- 05 9.09E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E- 05 9.36E- 05 2.66E- 04
92 93 94 95 96 97 98 99	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.62E- 04 1.46E- 04 8.31E- 05	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05 3.17E- 05 3.17E- 05 7.59F-	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E- 05 3.56E- 05 7.81F-	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E- 04 4.78E- 05 03F-	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 3.73E- 05 3.73E- 05 3.80E- 05 5.39E- 05 9.09F-	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E- 05 9.36E- 05 2.66E-
92 93 94 95 96 97 98 99	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.62E- 04 1.46E- 04 8.31E- 05	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05 3.17E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 6.27E- 05 5.29E- 05 7.27E- 05 3.56E- 05	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E- 04 4.78E- 05	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E- 05 5.39E- 05	04 1.03E- 04 9.23E- 05 1.19E- 04 9.35E- 04 9.94E- 05 9.36E- 05 9.36E- 05
92 93 94 95 96 97 98	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.62E- 04 1.46E- 04 8.31E-	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05 3.17E-	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E- 05 3.56E-	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E- 04 4.78F-	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E- 05 5.39E-	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E- 05 9.36F-
92 93 94 95 96 97 98	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.62E- 04 1.46E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 4.41E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E- 05	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E- 04	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E- 05
92 93 94 95 96 97	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.54E- 04 1.62E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05 05 4.41E-	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05 7.27E-	03 3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05 1.69E-	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05 3.80E-	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05 9.71E-
92 93 94 95 96 97	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04 1.62E- 04	3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E- 05	03 3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E- 05	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E- 05
92 93 94 95 96	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05 3.53E-	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05 5.29E-	03 3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05 3.46E-	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05 3.73E-	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04 9.94E-
92 93 94 95 96	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E- 04	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E- 05	03 3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E- 05	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E- 04
92 93 94 95	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04 1.54E	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05 4.07E.	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05 4.41E	03 3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05 4.41E	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05 4.98E.	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04 1.35E
92 93 94 95	1.17E- 04 2.42E- 04 8.84E- 05 1.82E- 04	0.3 3.71E- 05 5.99E- 05 3.02E- 05 5.01E- 05	3.96E- 05 4.75E- 05 3.48E- 05 6.27E- 05	3.80E- 05 5.16E- 05 3.00E- 05 5.79E- 05	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E- 04
92 93 94	1.17E- 04 2.42E- 04 8.84E- 05	03 3.71E- 05 5.99E- 05 3.02E- 05 5.01E	3.96E- 05 4.75E- 05 3.48E- 05 6.27E	3.80E- 05 5.16E- 05 3.00E- 05 5.79E	03 4.48E- 05 7.38E- 05 3.76E- 05 5.04E	04 1.03E- 04 1.59E- 04 9.23E- 05 1.19E
92 93 94	1.17E- 04 2.42E- 04 8.84E- 05	03 3.71E- 05 5.99E- 05 3.02E- 05	3.96E- 05 4.75E- 05 3.48E- 05	3.80E- 05 5.16E- 05 3.00E-	03 4.48E- 05 7.38E- 05 3.76E- 05	04 1.03E- 04 1.59E- 04 9.23E- 05
92 93	1.17E- 04 2.42E- 04	03 3.71E- 05 5.99E- 05	3.96E- 05 4.75E- 05	3.80E- 05 5.16E- 05	03 4.48E- 05 7.38E- 05	04 1.03E- 04 1.59E- 04
92 93	1.17E- 04 2.42E-	03 3.71E- 05 5.99E-	3.96E- 05 4.75E-	3.80E- 05 5.16E-	05 4.48E- 05 7.38E-	04 1.03E- 04 1.59E-
92	1.17E- 04	3.71E- 05	3.96E- 05	3.80E- 05	05 4.48E- 05	04 1.03E- 04
92	1.17E-	3.71E-	3.96E-	3.80E-	4.48E-	1.03E-
	1 1	03	0.0	05	05	04
	04	05	05	05	115	04
91	1.21E-	4.01E-	4.22E-	4.46E-	5.53E-	1.35E-
	04	05	05	05	05	04
90	1.01E-	3.98E-	6.26E-	4.06E-	4.30E-	1.07E-
07	04	05	05	05	05	04
89	1.92E-	6.74E-	7.31E-	5.91E-	5.80E-	2.94E-
00	04	05	05	05	05	04
88	2.16E-	6.78E-	7.37E-	5.34E-	8.07E-	2.51E-
07	04	05	05	05	05	04
87	1.43E-	6.67E-	6.98E-	5.47E-	6.01E-	1.59E-
80	04	05	05	05	05	04
86	1.67E-	5.08E-	5.14E-	5.05E-	5.41E-	1.77E-
85	04	05	05	05	05	04
0.5	1.07E-	3.88E-	4.06E-	3.81E-	4.15E-	1.21E-
84	04	05	05	05	05	04
0.4	1.45E-	7.89E-	4.67E-	6.92E-	5.17E-	1.23E-
83	04	05	05	05	05	04
02	1.27E-	3.71E-	4.58E-	3.75E-	4.34E-	1.17E-
82	05	05	05	05	05	05
	947E-	3.08E-	3 14E-	5 36E-	3 50E-	8 78E-
81	04	05		0.801-	0.7712-	04
	1.62E	5 50E	10J	6 80E	6.77E	1 74E
80	04	05 05	05	4.15E-	4.40E- 05	04
	1 24E	2 5 2 E	5 02E	4 12E	03 4.46E	1 10E
79	1.27E- 04	3.02E-	4.93E-	0.09E-	05	1.16E- 04
	1 27E	5.62E	4.05E	6 00E	5 71E	1 190
78	0.001-	2.75E- 05	2.941-	5.01E- 05	05	0.0012-
	04 000E	2 755	2.04E	2.01E	2 50E	04 8.66E
77	1.25E-	4./4E-	0.90E-	4.91E-	0.54E-	2.19E-
	04	05	05	05	04	04
76	2.38E-	5.24E-	5.36E-	8.79E-	1.17E-	2.52E-

TABLE 10.	(Continued.)	Average tir	ne Spent to	o achieve	Consensus	for
Stochastic	(SM) and Syn	nmetric (syr	n) Matrix.			

Case 5: Transition matrix of doubly stochastic (DSM) and non-symmetric (nonsym) (Figure 6)

TABLE 11. Average Number of Iterations in the Consensus for Doubly

 Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	36.00	1.00	3.00	3.00	4.00	36.00
2	52.00	1.00	4.00	3.00	5.00	52.00
3	54.00	1.00	5.00	3.00	6.00	54.00
4	52.00	1.00	4.00	3.00	7.00	52.00
5	46.00	1.00	4.00	3.00	5.00	46.00
6	53.00	1.00	4.00	3.00	4.00	53.00
7	54.00	1.00	4.00	3.00	7.00	54.00

TABLE 11. (for Doubly S	<i>Continued</i> tochastic	f.) Average (DSM) and	Number Non-sym	of Iteratio metric (n	ns in the Co onsym) Mat	onsensus trix.
8	53.00	1.00	5.00	3.00	8.00	53.00
9	51.00	1.00	3.00	3.00	4.00	51.00
10	52.00	1.00	4.00	3.00	5.00	52.00
11	52.00	1.00	4.00	3.00	5.00	52.00
12	59.00	1.00	5.00	4.00	6.00	59.00
13	55.00	1.00	4.00	3.00	5.00	55.00
14	52.00	1.00	4.00	3.00	5.00	52.00
15	37.00	1.00	3.00	3.00	4.00	37.00
16	58.00	1.00	5.00	4.00	6.00	58.00
17	54.00	1.00	5.00	3.00	8.00	54.00
18	52.00	1.00	4.00	3.00	6.00	52.00
19	54.00	1.00	5.00	3.00	12.00	54.00
20	53.00	1.00	5.00	3.00	7.00	53.00
21	50.00	1.00	4.00	3.00	5.00	50.00
22	51.00	1.00	4.00	3.00	6.00	51.00
23	51.00	1.00	3.00	3.00	4.00	51.00
24	57.00	1.00	4.00	4.00	5.00	57.00
25	56.00	1.00	4.00	3.00	5.00	56.00
26	57.00	1.00	4.00	4.00	5.00	57.00
27	56.00	1.00	4.00	3.00	5.00	56.00
28	56.00	1.00	4.00	3.00	5.00	56.00
29	52.00	1.00	4.00	3.00	4.00	52.00
30	56.00	1.00	4.00	3.00	5.00	56.00
31	51.00	1.00	3.00	3.00	4.00	51.00
32	52.00	1.00	4.00	3.00	6.00	52.00
33	53.00	1.00	3.00	3.00	4.00	53.00
34	56.00	1.00	4.00	3.00	5.00	56.00
35	54.00	1.00	5.00	4.00	5.00	54.00
36	54.00	1.00	4.00	3.00	5.00	54.00
37	57.00	1.00	4.00	4.00	5.00	57.00
38	50.00	1.00	4.00	3.00	5.00	50.00
39	46.00	1.00	3.00	2.00	4.00	46.00
40	54.00	1.00	4.00	3.00	5.00	54.00
41	50.00	1.00	3.00	3.00	3.00	50.00
42	47.00	1.00	3.00	3.00	5.00	47.00
43	54.00	1.00	5.00	3.00	9.00	54.00
44	50.00	1.00	4.00	3.00	5.00	50.00
45	51.00	1.00	4.00	3.00	4.00	51.00
46	47.00	1.00	3.00	3.00	4.00	47.00
47	54.00	1.00	5.00	3.00	8.00	54.00
48	52.00	1.00	4.00	3.00	6.00	52.00
49	54.00	1.00	5.00	3.00	7.00	54.00

TABLE 11. (Continued.) Average Number of Iterations in the Consensus for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

50	54.00	1.00	4.00	3.00	5.00	54.00
51	50.00	1.00	3.00	3.00	4.00	50.00
52	52.00	1.00	4.00	3.00	4.00	52.00
53	45.00	1.00	3.00	2.00	3.00	45.00
54	52.00	1.00	4.00	3.00	5.00	52.00
55	55.00	1.00	4.00	3.00	5.00	55.00
56	54.00	1.00	5.00	3.00	9.00	54.00
57	55.00	1.00	4.00	3.00	4.00	55.00
58	56.00	1.00	4.00	3.00	5.00	56.00
59	54.00	1.00	3.00	3.00	4.00	54.00
60	53.00	1.00	4.00	3.00	5.00	53.00
61	54.00	1.00	5.00	4.00	5.00	54.00
62	54.00	1.00	4.00	3.00	6.00	54.00
63	53.00	1.00	4.00	3.00	7.00	53.00
64	45.00	1.00	3.00	3.00	4.00	45.00
65	54.00	1.00	4.00	3.00	4.00	54.00
66	54.00	1.00	5.00	3.00	8.00	54.00
67	54.00	1.00	5.00	3.00	10.00	54.00
68	55.00	1.00	4.00	3.00	4.00	55.00
69	54.00	1.00	5.00	3.00	9.00	54.00
70	37.00	1.00	3.00	3.00	5.00	37.00
71	51.00	1.00	4.00	3.00	5.00	51.00
72	59.00	1.00	5.00	4.00	6.00	59.00
73	53.00	1.00	4.00	3.00	6.00	53.00
74	52.00	1.00	4.00	3.00	6.00	52.00
75	52.00	1.00	4.00	3.00	5.00	52.00
76	54.00	1.00	4.00	3.00	5.00	54.00
77	47.00	1.00	3.00	2.00	3.00	47.00
78	46.00	1.00	3.00	3.00	4.00	46.00
79	51.00	1.00	3.00	3.00	4.00	51.00
80	51.00	1.00	3.00	2.00	4.00	51.00
81	53.00	1.00	4.00	3.00	5.00	53.00
82	54.00	1.00	4.00	4.00	5.00	54.00
83	48.00	1.00	3.00	3.00	5.00	48.00
84	50.00	1.00	4.00	3.00	4.00	50.00
85	54.00	1.00	4.00	3.00	6.00	54.00
86	50.00	1.00	4.00	3.00	6.00	50.00
87	54.00	1.00	4.00	3.00	5.00	54.00
88	55.00	1.00	4.00	3.00	4.00	55.00
89	53.00	1.00	4.00	3.00	6.00	53.00
90	54.00	1.00	5.00	3.00	8.00	54.00

TABLE 11.	(Continued.) Average Number of Iterations in the Consensus
for Doubly	Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

91	55.00	1.00	4.00	3.00	5.00	55.00
92	54.00	1.00	4.00	4.00	5.00	54.00
93	53.00	1.00	5.00	3.00	7.00	53.00
94	54.00	1.00	5.00	4.00	6.00	54.00
95	54.00	1.00	4.00	3.00	4.00	54.00
96	55.00	1.00	4.00	3.00	4.00	55.00
97	54.00	1.00	3.00	3.00	4.00	54.00
98	52.00	1.00	4.00	3.00	5.00	52.00
99	50.00	1.00	3.00	3.00	4.00	50.00
100	54.00	1.00	5.00	3.00	7.00	54.00
Average	52.27	1.00	3.99	3.07	5.35	52.27

TABLE 12. Average time Spent to Achieve Consensus for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	6.10E- 05	1.97E- 05	4.74E- 05	1.97E- 05	2.25E- 05	8.77E- 05
_	1.86E-	2.65E-	2.74E-	2.80E-	2.94E-	1.03E-
2	04	05	05	05	05	04
2	2.43E-	7.56E-	5.42E-	4.60E-	5.84E-	1.78E-
3	04	05	05	05	05	04
4	2.37E-	3.05E-	3.43E-	3.45E-	3.61E-	1.22E-
4	04	05	05	05	05	04
5	1.91E-	5.29E-	3.94E-	3.65E-	3.91E-	1.24E-
2	04	05	05	05	05	04
6	1.96E-	2.70E-	2.89E-	2.87E-	2.58E-	1.04E-
6	04	05	05	05	05	04
7	1.38E-	4.67E-	3.90E-	3.54E-	5.82E-	1.31E-
/	04	05	05	05	05	04
0	9.78E-	2.47E-	2.98E-	2.41E-	2.78E-	9.86E-
0	05	05	05	05	05	05
0	1.28E-	3.29E-	4.01E-	3.69E-	3.76E-	1.25E-
9	04	05	05	05	05	04
10	1.15E-	4.29E-	2.65E-	2.47E-	2.68E-	1.09E-
10	04	05	05	05	05	04
11	1.37E-	3.06E-	5.78E-	3.46E-	3.41E-	1.17E-
11	04	05	05	05	05	04
12	1.13E-	3.11E-	2.92E-	2.64E-	2.79E-	1.10E-
12	04	05	05	05	05	04
13	1.42E-	4.39E-	5.78E-	4.59E-	4.32E-	1.25E-
15	04	05	05	05	05	04
14	1.59E-	3.04E-	3.23E-	3.08E-	3.49E-	1.26E-
	04	05	05	05	05	04
15	1.86E-	3.69E-	4.60E-	5.54E-	7.63E-	1.44E-
	04	05	05	05	05	04
16	2.84E-	3.47E-	5.93E-	5.16E-	4.10E-	3.02E-
	04	05	05	05	05	04
17	1.57E-	3.44E-	3.83E-	3.50E-	3.82E-	1.82E-
	04	05	05	05	05	04
18	1.03E-	2.88E-	2.93E-	3.14E-	3.45E-	1.67E-
	04	05	05	05	05	04
19	1.03E-	2.83E-	2.85E-	4.69E-	3.54E-	1.12E-
	04	05	05	05	05	04
20	1.17E-	2.99E-	3.51E-	3.39E-	3.42E-	1.20E-
	04	05	05	05	05	04

TABLE 12. (Continued.) Average time Spent to Achieve Consensus for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.

21	1.08E-	4.41E-	5.01E-	3.45E-	3.69E-	2.07E-
22	9.76E-	2.38E-	2.59E-	2.39E-	2.79E-	9.64E-
22	05	05	05	05	05	05
23	1.44E-	3.52E-	3.25E-	3.20E-	3.21E-	1.20E- 04
24	1.12E-	2.76E-	2.85E-	2.82E-	2.76E-	1.11E-
24	04	05	05	05	05	04
25	1.92E- 04	3.74E- 05	3.46E- 05	4.73E- 05	5.11E- 05	2.51E- 04
26	1.87E-	4.81E-	4.05E-	3.92E-	4.10E-	1.45E-
20	04 2.02E	05	05	05	05 4 70E	04
27	04	4.01E- 05	05	4.00E- 05	4.70E- 05	04
28	1.78E-	5.70E-	4.90E-	5.64E-	4.99E-	1.75E-
	04 2.12E-	05 7 23E-	05 6.61E-	05 9.51E-	05 6.08E-	04 1.52E-
29	04	05	05	05	05	04
30	1.23E-	2.89E-	3.68E-	3.99E-	3.39E-	1.72E-
21	1.77E-	2.99E-	3.23E-	3.26E-	4.03E-	1.28E-
31	04	05	05	05	05	04
32	1.32E- 04	4.26E- 05	4.48E- 05	4.26E- 05	3.77E- 04	2.16E- 04
33	1.20E	4.88E-	3.90E-	3.50E-	1.30E	1.24E-
55	04	05	05	05	04	04
34	1.14E- 04	2.90E- 05	0.07E- 05	05	4.07E- 05	1.97E- 04
35	1.50E-	6.00E-	7.97E-	7.55E-	8.71E-	3.59E-
	04 213F-	05 3.60F-	05 4 42F-	05 5 53E-	05 397F-	04 1 56F-
36	04	05	05	05	05	04
37	3.16E-	4.23E-	6.75E-	4.86E-	4.20E-	1.71E-
20	1.55E-	4.10E-	4.38E-	4.33E-	3.69E-	04 1.41E-
38	04	05	05	05	05	04
39	2.57E- 04	6.02E- 05	1.14E- 04	6.56E- 05	6.02E-	1.65E- 04
40	1.17E-	3.09E-	2.98E-	3.56E-	3.07E-	1.15E-
40	04	05	05	05	05	04
41	2.04E- 04	3.00E- 05	3.66E- 05	05	2.87E- 05	04
42	1.39E-	3.16E-	3.28E-	3.31E-	3.46E-	1.06E-
	04 116E-	05 2 89E-	05 2.92E	05 3 25E-	05 3 73E-	04 1 19E-
43	04	05	05	05	05	04
44	1.09E-	2.90E-	2.87E-	2.85E-	2.82E-	1.10E-
4.5	1.78E-	2.79E-	2.85E-	2.64E-	2.73E-	1.01E-
45	04	05	05	05	05	04
46	1.38E- 04	3.98E- 05	4.26E- 05	4.08E- 05	3.63E- 05	1.34E- 04
47	2.11E	3.28E-	7.03E-	2.96E-	2.83E-	1.12E-
· ۲	04	05	05	05	05	04
48	1.84E- 04	05	4.01E- 05	05	3.37E- 05	1.30E- 04
49	1.48E-	3.48E-	3.42E-	2.97E-	3.11E-	1.81E-
-	04 1.10E-	05 3.48E-	05 2.83E-	05 2.65E-	05 2.32E-	04 1.10E-
50	04	05	05	05	05	04
51	1.67E-	3.77E-	4.10E-	4.84E-	5.79E-	2.32E-
52	1.33E-	4.13E-	3.25E-	2.93E-	2.68E-	1.17E-
52	04	05	05	05	05	04
53	1.35E- 04	3.67E- 05	3.79E- 05	3.46E- 05	3.13E- 05	1.22E- 04
54	2.03E-	3.22E-	3.13E-	2.93E-	2.60E-	1.28E-
54	04	05	05	05	05	04
55	2.36E- 04	0.18E- 05	0.03E- 05	4.84E- 05	0.27E- 05	1.91E- 04
56	2.37E-	5.31E-	6.92E-	4.09E-	4.03E-	1.85E-
20	04	05	05	05	05	04

FABLE 12. (Continued.) Average time Spent to Achieve Consensus for Doubly Stochastic (DSM) and Non-symmetric (nonsym) Matrix.									
57	2.00E-	6.81E-	6.95E-	6.50E-	6.30E-	1.83E-			
	04	05	05	05	05	04			
58	2.32E- 04	3.73E-	4.06E-	4.74E-	3.11E-	1.40E- 04			
59	1.05E-	2.74E-	2.77E-	2.80E-	2.34E-	1.05E-			
60	2.07E-	3.13E-	3.02E-	3.23E-	2.78E-	04 1.86E-			
61	04	05	05	05	05	04			
	1.18E-	3.37E-	3.36E-	3.31E-	3.34E-	1.23E-			
62	04	05	05	05	05	04			
	1.78E-	3.02E-	2.86E-	2.99E-	3.17E-	1.26E-			
62	04	05	05	05	05	04			
	1.24E-	3.64E-	5.14E-	5.60E-	5.17E-	1.43E-			
63	04	05 7.96E-	05 4 45F-	05 4 30E-	05 4 01E-	04			
64	04	05	05	05	05	04			
	1.24E	2.10E	2.04E	2.02E	2.81E	1.12E			
65	1.24E- 04	05	05	2.93E- 05	2.81E- 05	04			
66	1.82E-	3.50E-	4.38E-	3.93E-	4.08E-	1.39E-			
	04	05	05	05	05	04			
67	1.13E-	3.16E-	3.02E-	2.93E-	3.19E-	1.16E-			
	04	05	05	05	05	04			
68	1.46E-	3.51E-	3.98E-	4.01E-	5.43E-	1.50E-			
	04	05	05	05	05	04			
69	1.30E-	3.09E-	3.43E-	4.35E-	3.24E-	1.16E-			
	04	05	05	05	05	04			
70	2.01E-	3.53E-	3.52E-	3.24E-	3.73E-	8.89E-			
	04	05	05	05	05	05			
71	1.54E-	3.94E-	4.13E-	4.10E-	3.44E-	1.36E-			
72	2.17E-	4.38E-	4.87E-	4.81E-	5.37E-	2.03E-			
73	04 1.14E-	05 3.05E-	05 3.06E-	2.82E-	2.97E-	04 1.14E-			
74	04	05	05	05	05	04			
	2.84E-	6.03E-	4.68E-	5.92E-	4.62E-	1.68E-			
75	04	05	05	05	05	04			
	1.75E-	7.44E-	4.87E-	4.60E-	4.21E-	1.96E-			
76	04	05	05	05	05	04			
	2.35E-	5.41E-	5.72E-	4.83E-	4.90E-	2.64E-			
70	04	05	05	05	05	04			
	2.56E-	7.93E-	5.68E-	5.56E-	7.75E-	3.73E-			
77	04	05	05	05	05	04			
	1.06E-	3 18E-	3.14E-	2.88E-	3 26E-	1.16E-			
78	04	05 2 80E	05 2.02E	05 1.47E	05 3.01E	04 1 10E			
79	04	05	05 2.52E	04	05	04			
80	3.18E-	3.66E-	3.59E-	3.29E-	4.23E-	1.37E-			
	04	05	05	05	05	04			
81	1.24E-	4.51E-	3.11E-	2.98E-	2.95E-	1.21E-			
	04	05	05	05	05	04			
82	1.75E-	4.65E-	5.99E-	4.67E-	6.28E-	3.80E-			
	04	05	05	05	05	04			
83	1.07E-	2.99E-	2.72E-	3.22E-	2.70E-	1.10E-			
	04	05	05	05	05	04			
84	1.36E-	4.77E-	4.21E-	4.18E-	3.62E-	1.41E-			
	04	05	05	05	05	04			
85	2.25E- 04	3.68E-	3.84E-	4.10E-	4.14E-	2.00E- 04			
86	3.28E-	6.96E-	6.75E-	4.98E-	5.01E-	2.41E-			
87	1.41E-	3.61E-	3.55E-	3.40E-	3.79E-	1.33E-			
88	04	05	05	05	05	04			
	1.53E-	4.02E-	4.61E-	3.96E-	4.20E-	1.68E-			
80	04	05	05	05	05	04			
	1.63E-	4.21E-	6.79E-	4.89E-	4.62E-	1.81E-			
07	04	05	05	05	05	04			
	2.68E-	4.90E-	6.29E-	4.83E-	6.64E-	3.47E-			
90	04	05	05	05	05	04			
	2.63E-	6.95E-	1.36E-	6.67E-	7.51E-	4.39E-			
91	04	05	04	05	05	04			
	3 80F	5.15E	6.04E	7.42E	5.24E	1.97E			
92	04	05	0.04E- 05	05	05	04			

TABLE 12.	(Continued.) Average time Spent to Achieve Consensus for
Doubly Sto	chastic (DSM) and Non-symmetric (nonsym) Matrix.

Average	1.77E-	4.05E-	4.41E-	4.15E-	4.4 <mark>8E-</mark>	1.6 <mark>1E-</mark>
	04	05	05	05	05	04
100	2.31E-	3.60E-	4.49E-	5.36E-	3.85E-	1.51E-
	04	05	05	05	05	04
99	2.11E-	2.99E-	3.17E-	3.07E-	2.56E-	1.17E-
	04	05	05	05	05	04
98	1.55E-	3.36E-	3.75E-	3.81E-	4.88E-	1.43E-
	04	05	05	05	05	04
97	2.11E-	4.33E-	4.33E-	4.15E-	3.88E-	1.47E-
	04	05	05	05	05	04
96	1.21E-	2.99E-	2.77E-	2.60E-	2.91E-	1.14E-
	04	05	05	05	05	04
95	2.27E-	4.97E-	5.23E-	5.39E-	5.06E-	1.81E-
	04	05	05	05	05	04
94	3.69E-	6.86E-	8.12E-	5.74E-	6.85E-	4.10E-
	04	05	05	05	05	04
93	3.73E-	3.95E-	3.98E-	3.93E-	3.38E-	1.72E-
	04	05	05	05	05	04

Case 6: Transition matrix of doubly stochastic (DSM) and symmetric (sym) (Figure 7)

TABLE 13. Average Number of Iterations in the Consensus for Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	36.00	1.00	3.00	3.00	4.00	36.00
2	52.00	1.00	4.00	3.00	5.00	52.00
3	54.00	1.00	5.00	3.00	6.00	54.00
4	52.00	1.00	4.00	3.00	7.00	52.00
5	46.00	1.00	4.00	3.00	5.00	46.00
6	53.00	1.00	4.00	3.00	4.00	53.00
7	54.00	1.00	4.00	3.00	7.00	54.00
8	53.00	1.00	5.00	3.00	8.00	53.00
9	51.00	1.00	3.00	3.00	4.00	51.00
10	52.00	1.00	4.00	3.00	5.00	52.00
11	52.00	1.00	4.00	3.00	5.00	52.00
12	59.00	1.00	5.00	4.00	6.00	59.00
13	55.00	1.00	4.00	3.00	5.00	55.00
14	52.00	1.00	4.00	3.00	5.00	52.00
15	37.00	1.00	3.00	3.00	4.00	37.00
16	58.00	1.00	5.00	4.00	6.00	58.00
17	54.00	1.00	5.00	3.00	8.00	54.00
18	52.00	1.00	4.00	3.00	6.00	52.00
19	54.00	1.00	5.00	3.00	12.00	54.00
20	53.00	1.00	5.00	3.00	7.00	53.00
21	50.00	1.00	4.00	3.00	5.00	50.00
22	51.00	1.00	4.00	3.00	6.00	51.00

TABLE 13. (C for Doubly St	<i>Continued</i> ochastic	f.) Average (DSM) and	e Number I Symmet	of Iteratio ric (sym) l	ons in the C Matrix.	Consensus
23	51.00	1.00	3.00	3.00	4.00	51.00
24	57.00	1.00	4.00	4.00	5.00	57.00
25	56.00	1.00	4.00	3.00	5.00	56.00
26	57.00	1.00	4.00	4.00	5.00	57.00
27	56.00	1.00	4.00	3.00	5.00	56.00
28	56.00	1.00	4.00	3.00	5.00	56.00
29	52.00	1.00	4.00	3.00	4.00	52.00
30	56.00	1.00	4.00	3.00	5.00	56.00
31	51.00	1.00	3.00	3.00	4.00	51.00
32	52.00	1.00	4.00	3.00	6.00	52.00
33	53.00	1.00	3.00	3.00	4.00	53.00
34	56.00	1.00	4.00	3.00	5.00	56.00
35	54.00	1.00	5.00	4.00	5.00	54.00
36	54.00	1.00	4.00	3.00	5.00	54.00
37	57.00	1.00	4.00	4.00	5.00	57.00
38	50.00	1.00	4.00	3.00	5.00	50.00
39	46.00	1.00	3.00	2.00	4.00	46.00
40	54.00	1.00	4.00	3.00	5.00	54.00
41	50.00	1.00	3.00	3.00	3.00	50.00
42	47.00	1.00	3.00	3.00	5.00	47.00
43	54.00	1.00	5.00	3.00	9.00	54.00
44	50.00	1.00	4.00	3.00	5.00	50.00
45	51.00	1.00	4.00	3.00	4.00	51.00
46	47.00	1.00	3.00	3.00	4.00	47.00
47	54.00	1.00	5.00	3.00	8.00	54.00
48	52.00	1.00	4.00	3.00	6.00	52.00
49	54.00	1.00	5.00	3.00	7.00	54.00
50	54.00	1.00	4.00	3.00	5.00	54.00
51	50.00	1.00	3.00	3.00	4.00	50.00
52	52.00	1.00	4.00	3.00	4.00	52.00
53	45.00	1.00	3.00	2.00	3.00	45.00
54	52.00	1.00	4.00	3.00	5.00	52.00
55	55.00	1.00	4.00	3.00	5.00	55.00
56	54.00	1.00	5.00	3.00	9.00	54.00
57	55.00	1.00	4.00	3.00	4.00	55.00
58	56.00	1.00	4.00	3.00	5.00	56.00
59	54.00	1.00	3.00	3.00	4.00	54.00
60	53.00	1.00	4.00	3.00	5.00	53.00
61	54.00	1.00	5.00	4.00	5.00	54.00
62	54.00	1.00	4.00	3.00	6.00	54.00
63	53.00	1.00	4.00	3.00	7.00	53.00
64	45.00	1.00	3.00	3.00	4.00	45.00

8.31E-

05

7.96E-05

7.57E-

05

5.33E-

05

5.28E-

05

4.83E-

05

5.19E-

05

4.84E-05

6.33E

05

5.84E-

05

6.06E-

05

5.12E-

05

4.78E-

05

4.55E-05

4.50E-

05

4.73E-

05

4.81E-

05

7.44E-

05

4.74E-

05

7.12E-

05 5.08E-

05

4.48E-

05

4.10E

05

4.37E-

05

4.13E-

05

3.71E-

05

3.99E-

05

3.80E-

05

3.74E-

05

3.81E-

05

7.05E-

05

3.97E-

05

3.40E-

05

3.41E-

05

4.28E-

05

2.14E-

04

36

5.28E

-05

5.33

E-05

4.21E-

04

4.57E-

04

2.71E-

04

3.60E-

04

3.00E-

04

5.16E-

04

3.22E-

04

3.46E-

04

2.61E-

04

2.72E-

04

2.41E-

04

3.37E-

04

3.72E-

04 3.24E-

04

2.76E-

04

2.61E-

04

2.51E-

04

2.21E-

04

5.08E-

04

2.99E-

04

3.41E-

04

1.81E-

04

2.44E-

04

2.55E-

04

2.29E-

04

2.13E-

04

2.33E-

04

1.57E-

04

2.06E-

04 1.99E-

04

2.00E-

04

1.72E-

04

1.84E-

04

1.75E-

04

1.85E-

04

5.03E

-05

7.17E

-05

6.13E

-05

1.06E

-04

5.01E

-05

5.88E

-05

4.99E

-05

5.51E

-05

4.61E

-05

6.28E

-05

6.45E

-05

4.54E

-05

5.14E

-05

5.02E

-05

5.99E

-05

4.59E

-05

6.25E

-05

4.62E

-05

5.21E

-05

5.58E

-05

4.12E

-05

3.82E

-05

5.65E

-05

4.37E

-05

6.79E

-05

3.83E

-05

3.71E

-05

5.59E

-05

5.87E

-05

3.89E

-05

5.54E

-05

4.08E

-05

3.26E

-05

5.91E

-05

3.99E

-05

65	54.00	1.00	4.00	3.00	4.00	54.00
66	54.00	1.00	5.00	3.00	8.00	54.00
67	54.00	1.00	5.00	3.00	10.00	54.00
68	55.00	1.00	4.00	3.00	4.00	55.00
69	54.00	1.00	5.00	3.00	9.00	54.00
70	37.00	1.00	3.00	3.00	5.00	37.00
71	51.00	1.00	4.00	3.00	5.00	51.00
72	59.00	1.00	5.00	4.00	6.00	59.00
73	53.00	1.00	4.00	3.00	6.00	53.00
74	52.00	1.00	4.00	3.00	6.00	52.00
75	52.00	1.00	4.00	3.00	5.00	52.00
76	54.00	1.00	4.00	3.00	5.00	54.00
77	47.00	1.00	3.00	2.00	3.00	47.00
78	46.00	1.00	3.00	3.00	4.00	46.00
79	51.00	1.00	3.00	3.00	4.00	51.00
80	51.00	1.00	3.00	2.00	4.00	51.00
81	53.00	1.00	4.00	3.00	5.00	53.00
82	54.00	1.00	4.00	4.00	5.00	54.00
83	48.00	1.00	3.00	3.00	5.00	48.00
84	50.00	1.00	4.00	3.00	4.00	50.00
85	54.00	1.00	4.00	3.00	6.00	54.00
86	50.00	1.00	4.00	3.00	6.00	50.00
87	54.00	1.00	4.00	3.00	5.00	54.00
88	55.00	1.00	4.00	3.00	4.00	55.00
89	53.00	1.00	4.00	3.00	6.00	53.00
90	54.00	1.00	5.00	3.00	8.00	54.00
91	55.00	1.00	4.00	3.00	5.00	55.00
92	54.00	1.00	4.00	4.00	5.00	54.00
93	53.00	1.00	5.00	3.00	7.00	53.00
94	54.00	1.00	5.00	4.00	6.00	54.00
95	54.00	1.00	4.00	3.00	4.00	54.00
96	55.00	1.00	4.00	3.00	4.00	55.00
97	54.00	1.00	3.00	3.00	4.00	54.00
98	52.00	1.00	4.00	3.00	5.00	52.00
99	50.00	1.00	3.00	3.00	4.00	50.00
100	54.00	1.00	5.00	3.00	7.00	54.00
Average	52.27	1.00	3.99	3.07	5.35	52.27

TABLE 13.	(Continued	.) Average	e Numbe	er of Itera	tions in t	the Consensus
for Doubly	y Stochastic (DSM) and	d Symme	etric (sym) Matrix.	

TABLE 14. (Continued.) Average time Spent To achieve Consensus for Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

										2 8/F-	5 08E	5
66	54.00	1.0	00	5.00	3.00	8.00	54.00	1	2	2.04E- 04	-05	E
67	54.00	1.0	00	5.00	3.00	10.00	54.00		3	4.18E- 04	5.71E -05	6. E
68	55.00	1.0	00	4.00	3.00	4.00	55.00		4	6.02E-	5.47E	5
69	54.00	1.0	00	5.00	3.00	9.00	54.00	-		04 2.89E-	-05 5.46E	E- 5
70	37.00	1 (00	3.00	3.00	5.00	37.00		5	04	-05	E
71	51.00	1.0	00	4.00	3.00	5.00	51.00	-	6	04	-05	E E
72	50.00	1.0	00	5.00	4.00	6.00	59.00	-	7	2.97E- 04	5.51E -05	6 E
72	52.00	1.0	00	4.00	3.00	6.00	52.00	-	8	3.83E-	5.30E	8
75	52.00	1.0	00	4.00	2.00	6.00	52.00	-	0	04 5.12E-	-05 5.15E	E 5
74	52.00	1.0	00	4.00	3.00	5.00	52.00	-	7	04 3 19E-	-05 5.45E	E 7
/5	52.00	1.0	00	4.00	3.00	5.00	52.00	-	10	04	-05	É
76	54.00	1.0	00	4.00	3.00	5.00	54.00	-	11	2.69E- 04	5.82E -05	7 E
77	47.00	1.0	00	3.00	2.00	3.00	47.00	-	12	2.54E-	5.39E	4 E
78	46.00	1.0	00	3.00	3.00	4.00	46.00	-	13	5.15E-	5.32E	E 5
79	51.00	1.0	00	3.00	3.00	4.00	51.00		15	04 3.03E-	-05 5.00F	E 4
80	51.00	1.0	00	3.00	2.00	4.00	51.00		14	04	-05	E
81	53.00	1.0	00	4.00	3.00	5.00	53.00		15	3.52E- 04	5.17E -05	6 E
82	54.00	1.0	00	4.00	4.00	5.00	54.00		16	2.53E-	5.33E	4
83	48.00	1.0	00	3.00	3.00	5.00	48.00		17	4.32E-	-05 5.75E	E 5
84	50.00	1.0	00	4.00	3.00	4.00	50.00		17	04 2.87E-	-05	E
85	54.00	1.0	00	4.00	3.00	6.00	54.00		18	04	-05	E
86	50.00	1.0	00	4.00	3.00	6.00	50.00		19	2.95E- 04	5.75E -05	4 E
87	54.00	1.0	00	4.00	3.00	5.00	54.00		20	4.36E-	5.10E	5 E
88	55.00	1.0	00	4.00	3.00	4.00	55.00		21	2.28E-	5.27E	6
89	53.00	1.0	00	4.00	3.00	6.00	53.00			04 3.35E-	-05 5.66E	E 4
90	54.00	1.0	00	5.00	3.00	8.00	54.00	-	22	04	-05	E
91	55.00	1.0	00	4.00	3.00	5.00	55.00	_	23	1.93E- 04	-05	E
92	54.00	1.0	00	4.00	4.00	5.00	54.00		24	2.24E- 04	5.47E -05	4 E
93	53.00	1.0	00	5.00	3.00	7.00	53.00		25	2.59E-	5.48E	4
94	54.00	1.0	00	5.00	4 00	6.00	54.00		26	2.23E-	-03 5.50E	E 4
95	54.00	1.0	00	4 00	3.00	4 00	54.00		20	04 2 29E-	-05 5 51E	E
96	55.00	1.0	00	4.00	3.00	4.00	55.00	_	27	04	-05	Ē
07	54.00	1.0		3.00	3.00	4.00	54.00	-	28	2.27E- 04	5.55E -05	4 E
7/ 00	52.00	1.0	00	4.00	3.00	4.00	52.00	-	29	2.01E-	4.91E	4 F
98	52.00	1.0		4.00	3.00	5.00	52.00	-	30	2.76E-	4.93E	4
99	50.00	1.0	00	3.00	3.00	4.00	50.00	-		04 2.44E-	-05 1.72E	E
100	54.00	1.(00	5.00	3.00	7.00	54.00		31	04	-04	E
Average	52.27	1.0	00	3.99	3.07	5.35	52.27		32	2.28E- 04	4.62E -05	B B
ABLE 14.	Average ti	me Sp	pent To	achieve	Consensi	us for Doub	oly		33	1.78E- 04	5.30E	4 E
ochastic (l	USM) and	Symn	netric (s	sym) Ma	trix.		010		34	1.80E-	-05 5.16E	E 5
TESTS	DG	M I	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber			04 1.80E-	-05 4.38E	E 3
NO					Ì	Ì	Model		35	04	-05	F

1

4.15E-

04

1.01E

-04

3.15

E-04

3.39E-

04

5.76E

-04

5.83E-

04

TABLE 14. (Continued.) Average time Spent To achieve Consensus for Doubly Stochastic (DSM) and Symmetric (sym) Matrix.

37	2.11E-	4.69E	4.42	5.82E-	4.01E	3.38E-
57	04	-05	E-05	05	-05	04
38	2.24E-	5.52E	4.52	4.17E-	4.25E	2.42E-
50	04	-05	E-05	05	-05	04
39	2.32E-	4.81E	4.23	4.14E-	4.06E	2.43E-
37	04	-05	E-05	05	-05	04
40	6.51E-	5.40E	6.79	7.05E-	4.83E	4.59E-
40	04	-05	E-05	05	-05	04
41	3.10E-	5.14E	6.62	4.79E-	4.52E	2.65E-
71	04	-05	E-05	05	-05	04
42	3.06E-	5.05E	4.77	4.66E-	4.08E	2.89E-
72	04	-05	E-05	05	-05	04
43	2.82E-	4.04E	4.34	3.76E-	3.65E	1.78E-
15	04	-05	E-05	05	-05	04
44	2.10E-	3.89E	4.68	3.88E-	6.25E	2.25E-
	04	-05	E-05	05	-05	04
45	2.54E-	4.21E	5.05	4.42E-	3.68E	2.21E-
15	04	-05	E-05	05	-05	04
46	4.41E-	4.86E	5.51	3.53E-	6.63E	3.73E-
	04	-05	E-05	05	-05	04
47	3.69E-	3.98E	6.29	5.91E-	6.11E	2.53E-
.,	04	-05	E-05	05	-05	04
48	2.18E-	3.78E	4.04	4.16E-	3.96E	2.91E-
10	04	-05	E-05	05	-05	04
49	2.15E-	3.85E	4.29	4.02E-	3.67E	2.17E-
12	04	-05	E-05	05	-05	04
50	1.63E-	4.83E	3.26	2.97E-	6.73E	1.54E-
50	04	-05	E-05	05	-05	04
51	1.95E-	4.78E	3.79	3.77E-	3.95E	2.11E-
51	04	-05	E-05	05	-05	04
52	2.24E-	3.46E	3.66	5.15E-	6.49E	2.12E-
52	04	-05	E-05	05	-05	04
53	2.25E-	4.09E	3.96	4.03E-	4.23E	1.62E-
	04	-05	E-05	05	-05	04
54	2.41E-	5.11E	5.98	4.18E-	4.16E	2.79E-
	04	-05	E-05	05	-05	04
55	2.19E-	3.67E	6.36	4.08E-	3.57E	2.29E-
	04	-05	E-05	05	-05	04
56	2.02E-	5.48E	4.22	4.13E-	6.70E	2.04E-
	04	-05	E-05	05	-05	04
57	2.11E-	4.48E	3.64 E.05	3.49E-	3.50E	2.20E-
	2.025	-05	E-05	05 4.0CE	-05	2.005
58	2.02E-	4.80E	3.60	4.06E-	6.21E	2.00E-
	1.765	-05	E-03	2.46E	-03	04 2.66E
59	1./0E-	4.31E	3.08 E 05	3.40E-	0.30E	2.00E-
	2.94	-05 2.02E	E-05	5.520	-05	1.04E
60	2.80E-	3.93E	5.92 E 05	5.55E-	0.38E	1.94E-
	2.00E	-05 4 10E	E-03	05 455E	-05 4.05E	2.15E
61	2.90E-	4.10E	5.85 E 05	4.55E-	4.95E	2.13E-
	2 70F	-05 // 18E	5.56	6 20E	-05 5.03E	2 08E
62	2.701-	4.16E	5.50 E 05	0.201-	05	2.981-
	2 74E-	-05 3.88E	<u>L-05</u>	4.51E-	5.00E	2 57E-
63	04	-05	F-05	4.51L- 05	-05	04
	2 13E-	4 89F	3.91	4 15E-	3.69F	2 27E-
64	04	-05	E-05	05	-05	04
	2 29E-	3 79E	3 99	4 14E-	6.26E	2 44E-
65	04	-05	E-05	05	-05	04
	2.90E-	4.17E	4.53	4.40E-	3.58E	2.66E-
66	04	-05	E-05	05	-05	04
	2.19E-	4.71E	3.50	3.43E-	3.24E	1.97E-
67	04	-05	E-05	05	-05	04
<i>(</i> 0	2.88E-	4.23E	4.99	5.70E-	4.23E	3.58E-
68	04	-05	E-05	05	-05	04
62	2.11E-	4.43E	5.46	9.53E-	4.13E	4.35E-
69	04	-05	E-05	05	-05	04
	5.05E-	4.78E	4.02	4.39E-	3.69E	2.37E-
70	04	-05	E-05	05	-05	04
71	1.70E-	4.55E	4.44	4.36E-	4.82E	1.91E-
71	04	-05	E-05	05	-05	04
	•	•				

TABLE 14. (Co. Doubly Stochas	<i>ntinued.)</i> A stic (DSM) a	verage tin and Symn	me Spen netric (sy	t To achie (m) Matrix	ve Conse «.	nsus for
70	2.00E-	3.33E	4.42	3.42E-	3.00E	2.00E-
72	04	-05	E-05	05	-05	04
72	1.87E-	3.36E	3.27	3.39E-	6.85E	1.89E-
75	04	-05	E-05	05	-05	04
74	1.63E-	3.31E	3.54	4.05E-	3.45E	1.97E-
74	04	-05	E-05	05	-05	04
75	2.07E-	4.17E	4.27	5.10E-	6.65E	2.25E-
,5	04	-05	E-05	05	-05	04
76	2.47E-	4.53E	4.74	4.20E-	3.87E	2.27E-
, .	04	-05	E-05	05	-05	04
77	2.62E-	4.49E	6.81	5.61E-	4.12E	2.43E-
	04	-05	E-05	05	-05	04
78	2.94E-	4.68E	4.32	4.13E-	4.10E	2.11E-
	04 2.20E	-05 5.47E	E-05	05	-05	04 2.96E
79	2.39E-	5.47E	0.27 E 05	0.13E-	5.28E	2.80E-
	2 42E	-03	L-03	5 5 7 F	-03 4 37E	4 20E
80	04	-05	F-05	05	-05	4.2911-
	4 94F-	5 12F	4 94	5 10F-	4 27F	5 23E-
81		-05	F-05	05	-05	04
	2 62E-	4 71E	4 73	6 15E-	5 54E	3 48E-
82	04	-05	E-05	0.152	-05	04
	2.65E-	5.47E	4.97	5.08E-	6.15E	4.80E-
83	04	-05	E-05	05	-05	04
0.4	3.35E-	4.74E	7.12	4.89E-	4.74E	3.80E-
84	04	-05	E-05	05	-05	04
85	4.38E-	5.07E	4.93	4.71E-	4.60E	2.66E-
85	04	-05	E-05	05	-05	04
86	3.17E-	5.12E	7.75	6.73E-	4.47E	3.59E-
	04	-05	E-05	05	-05	04
87	2.30E-	5.28E	4.93	4.78E-	5.51E	1.87E-
	04 2.0(E	-05	E-05	05 5.02E	-05	04
88	5.00E-	3.73E	4.07 E.05	3.93E- 05	4.03E	4.07E-
	4 87E-	-05 3.94E	4 29	5 37E-	-05 5 59E	3.40E-
89		-05	F-05	05	-05	04
	3.66E-	3.94E	4.45	4.79E-	6.91E	2.32E-
90	04	-05	E-05	05	-05	04
01	3.63E-	4.69E	6.28	4.90E-	5.76E	3.82E-
91	04	-05	E-05	05	-05	04
02	2.83E-	5.35E	6.78	4.56E-	4.40E	3.29E-
92	04	-05	E-05	05	-05	04
93	2.62E-	4.94E	6.83	6.70E-	4.43E	2.26E-
,,,	04	-05	E-05	05	-05	04
94	3.09E-	4.82E	5.02	6.11E-	5.56E	3.74E-
	04	-05	E-05	05	-05	04
95	4.14E-	5.56E	0.00	/.46E-	6.2/E	5.29E-
	2 30E	-03 4 57E	12	4 57E	-05 6.05E	2 74E
96	2.50L- 04	-05	E-04	4.57L-	-05	04
	2.48E-	4.22E	4.38	4.38E-	6.44E	4.11E
97	04	-05	E-05	05	-05	04
0.9	2.52E-	4.31E	4.41	4.74E-	4.22E	2.48E-
98	04	-05	E-05	05	-05	04
99	2.40E-	5.08E	6.33	5.75E-	5.55E	4.45E-
,,	04	-05	E-05	05	-05	04
100	3.64E-	4.71E	4.94	7.21E-	4.82E	4.91E-
	04 2.86E	-05	E-03	5.25E-	-03	2.87E
Average	04	05	05	05	05	04
		~~		~~	~~	

Case 7: Transition matrix of stochastic (SM) and reducible (Figure 8)

 TABLE 15.
 Average Number of Iterations in the Consensus for

 Stochastic (SM) and Reducible Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	8	1	11	8	8	8

TABLE 15. (Continued.) Average Number of Iterations in the Consensus for Stochastic (SM) and Reducible Matrix.

2	8	1	12	8	8	8	
3	ø	1	11	8	8	8	
4	ø	1	13	ø	8	00	
5	ø	1	11	ø	8	8	
6	ø	1	10	00	×	8	
7	ø	1	10	ø	×	ø	
8	ø	1	12	ø	8	8	
9	ø	1	10	×	8	∞	
10	ø	1	10	×	8	∞	
11	ø	1	11	ø	8	8	
12	ø	1	10	ø	8	8	
13	ø	1	13	ø	8	8	
14	ø	1	10	ø	8	8	
15	ø	1	10	ø	8	×	1
16	œ	1	11	œ	ø	ø	
17	œ	1	11	ø	ø	ø	1
18	ø	1	10	ø	8	∞	
19	ø	1	9	ø	8	8	
20	ø	1	9	ø	8	8	
21	ø	1	10	ø	8	8	
22	ø	1	12	ø	8	8	
23	ø	1	14	×	8	∞	
24	ø	1	10	×	8	∞	
25	ø	1	9	ø	8	8	
26	ø	1	15	ø	8	8	
27	ø	1	10	00	8	8	
28	ø	1	10	ø	8	ø	
29	8	1	11	8	8	8	
30	ø	1	11	×	×	ø	
31	ø	1	13	8	8	×	
32	ø	1	13	ø	8	ø	
33	ø	1	10	ø	8	ø	1
34	×	1	10	×	ø	×	
35	×	1	11	×	ø	[∞]	
36	×	1	11	×	×	ø	1
37	×	1	10	×	ø	ø	1
38	ø	1	11	ø	×	ø	1
39	ø	1	13	8	8	ø	1
40	ø	1	11	ø	ø	×	
41	ø	1	12	ø	×	ø	
42	ø	1	10	ø	8	ø	
43	ø	1	13	ø	8	ø	1
44	ø	1	11	ø	ŝ	8	

TABLE 15.	(Continued.)	Average	Number	of Iterations	s in the	Consensus
for Stochast	tic (SM) and	Reducible	e Matrix.			

45	ø	1	12	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
46	8	1	10	ø	8	8
47	ø	1	13	ø	8	∞
48	ø	1	10	ø	8	∞
49	×	1	15	ø	8	œ
50	×	1	10	ø	8	∞
51	ø	1	11	ø	8	~
52	ø	1	11	ø	ø	8
53	ø	1	10	ø	×	ø
54	8	1	12	8	8	×
55	8	1	11	ø	ø	×
56	8	1	11	8	8	×
57	8	1	15	8	8	×
58	8	1	12	8	8	×
59	×	1	10	ø	ø	×
60	×	1	11	ø	×	×
61	8	1	10	8	8	×
62	8	1	12	8	8	×
63	8	1	11	8	8	×
64	8	1	10	8	8	×
65	×	1	11	ø	8	8
66	ø	1	9	8	8	ø
67	ø	1	15	ø	8	ø
68	ø	1	10	ø	8	ø
69	ø	1	9	8	8	ø
70	ø	1	10	ø	8	ø
71	ø	1	14	ø	8	ø
72	ø	1	12	ø	8	ø
73	ø	1	9	ø	8	œ
74	∞	1	11	~~~~	8	∞
75	ø	1	11	∞	8	∞
76	ø	1	10	ø	8	∞
77	∞	1	11	8	8	∞
78	ø	1	11	∞	~	∞
79	ø	1	10	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ø
80	ø	1	20	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞
81	∞	1	11	∞	∞	∞
82	8	1	13	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
83	×	1	10	×	×	×
84	∞	1	11	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
85	ø	1	12	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ø
86	×	1	11	×	∞	∞

 TABLE 15. (Continued.) Average Number of Iterations in the Consensus for Stochastic (SM) and Reducible Matrix.

87	ø	1	9	8	8	~
88	8	1	10	8	8	8
89	8	1	11	8	8	8
90	8	1	9	8	8	8
91	8	1	10	8	8	8
92	8	1	11	8	8	8
93	8	1	12	8	8	8
94	8	1	11	8	8	8
95	8	1	11	8	8	8
96	8	1	13	8	8	8
97	8	1	12	8	8	8
98	8	1	11	8	8	8
99	ø	1	10	8	8	8
100	8	1	10	8	8	8
Average	×	1	11.13	Ø	8	Ø

 TABLE 16.
 Average Time spent to achieve Consensus for Stochastic (SM) and Reducible Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	×	4.88E- 04	0.0066	8	8	8
2	8	0.0012	0.0116	8	8	8
3	×	0.0103	7.04E- 04	8	8	8
4	8	3.60E- 04	0.0017	8	8	8
5	8	0.0012	0.0011	8	8	8
6	×	6.63E- 05	0.0032	8	8	8
7	×	6.60E- 05	8.98E- 05	8	8	8
8	×	7.67E- 05	7.62E- 05	8	8	8
9	ø	6.78E- 05	9.63E- 05	8	8	ø
10	ø	7.64E- 05	9.30E- 05	8	8	8
11	ø	6.34E- 05	9.05E- 05	8	8	8
12	ø	6.39E- 05	7.74E- 05	8	8	8
13	ø	6.91E- 05	1.01E- 04	8	8	8
14	8	8.29E- 05	7.12E- 05	8	8	ø
15	ø	5.33E- 05	6.58E- 05	ø	ø	ø
16	8	8.22E- 05	1.21E- 04	8	8	8
17	×	5.79E- 05	6.13E- 05	8	8	8

TABLE 16. (Stochastic (<i>(Continue</i> SM) and F	<i>d.)</i> Average Reducible N	e Time spe Aatrix.	nt to achi	eve Consen	sus for
18	∞	5.36E- 05	8.62E- 05	ø	ø	8
19	ø	6.89E- 05	1.14E- 04	8	8	8
20	ø	2.51E- 04	9.42E- 05	8	ø	∞
21	œ	7.48E- 05	1.08E- 04	8	8	∞
22	œ	7.69E- 05	1.27E- 04	8	8	∞
23	∞	7.01E- 05	9.37E- 05	ø	ø	ø
24	×	6.71E- 05	9.81E- 05	8	8	8
25	ø	6.72E- 05	9.82E- 05	8	8	8
26	ø	6.83E- 05	1.02E- 04	8	8	8
27	ø	7.33E- 05	1.00E- 04	8	8	8
28	8	8.41E- 05	7.43E- 05	8	8	8
29	8	5.31E- 05	9.41E- 05	8	8	8
30	8	7.14E- 05	1.12E- 04	8	8	8
31	8	8.03E- 05	1.03E- 04	8	8	8
32	ø	5.13E- 05	8.08E- 05	8	8	8
33	ø	8.51E- 05	9.59E- 05	8	8	∞
34	ø	7.06E- 05	1.07E- 04	8	8	8
35	ø	7.64E- 05	1.05E- 04	ø	ø	ø
36	ø	6.79E- 05	7.88E- 05	8	8	ø
37	ø	8.77E- 05	1.02E- 04	8	8	8
38	ø	6.88E- 05	1.03E- 04	8	8	ø
39	ø	8.43E- 05	1.08E- 04	8	8	ø
40	ø	6.89E- 05	1.15E- 04	8	8	ø
41	ø	6.34E- 05	9.92E- 05	8	8	ø
42	ø	5.35E- 05	1.02E- 04	8	8	∞
43	ø	9.43E- 05	8.53E- 05	8	8	8
44	∞	6.65E- 05	1.09E- 04	8	8	∞
45	∞	6.71E- 05	1.16E- 04	8	8	8
46	∞	6.68E- 05	1.01E- 04	8	8	∞
47	∞	8.03E- 05	1.18E- 04	ø	ø	∞
48	∞	5.74E- 05	8.72E- 05	ø	ø	ø
49	∞	5.22E- 05	1.19E- 04	ø	×	ø
50	∞	6.45E- 05	8.68E- 05	8	ø	8

TABLE 16. (Continued.) Average Time spent to achieve Consensus for Stochastic (SM) and Reducible Matrix.

51	∞	7.61E-	1.13E-	∞	∞	∞
52	∞	7.05E-	9.42E-	~	Ø	∞
53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	05 7.86E-	05 7.61E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		05 7.38E-	05 1.19E-		3	
54	00	05 7 49E-	04	∞	∞	00
55	8	05	04	8	8	8
56	8	8.05E- 05	1.19E- 04	8	8	8
57	8	8.56E- 05	1.06E- 04	8	8	8
58	∞	7.45E- 05	1.04E- 04	8	∞	∞
59	8	7.24E- 05	7.26E- 05	8	8	8
60	8	5.48E- 05	7.57E- 05	8	8	8
61	8	1.95E- 04	8.70E- 05	8	8	8
62	8	5.08E-	1.02E- 04	8	8	8
63	ø	8.24E-	8.08E-	8	ø	8
64	ø	7.88E-	1.43E-	×	ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65	~	6.81E-	1.15E-	8	8	8
66	8	7.72E-	1.05E-	8	8	8
67	∞	6.69E-	7.84E-	8	8	œ
68	∞	1.24E-	1.23E-	~	00	œ
69	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	04 8.80E-	04 1.15E-	8	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
70	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.52E-	04 1.97E-	∞	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
71	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	05 7.49E-	04 1.01E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	00
72		05 7.70E-	04 9.79E-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
72		05 6.75E-	05 1.13E-			
73	00	05 7.41E-	04	∞	00	00
74	8	05	04	8	8	ø
75	8	8.62E- 05	1.05E- 04	8	8	8
76	ø	7.96E- 05	1.34E- 04	8	∞	ø
77	8	7.92E- 05	1.22E- 04	8	8	ø
78	8	5.71E- 05	1.52E- 04	8	8	8
79	8	7.20E- 05	9.77E- 05	8	8	8
80	8	6.92E- 05	1.45E- 04	8	8	8
81	∞	5.29E- 05	9.47E- 05	8	8	~
82	8	6.46E- 05	1.02E- 04	8	8	8
83	ø	7.54E- 05	9.95E- 05	∞	∞	ø
84	ø	5.09E- 05	9.00E- 05	ø	∞	ø
85	ø	5.56E- 05	1.22E- 04	ø	ø	ø

 TABLE 16. (Continued.) Average Time spent to achieve Consensus for

 Stochastic (SM) and Reducible Matrix.

		7.61E-	1.25E-			
86	8	05	04	8	8	8
07		8.20E-	1.01E-			
8/	00	05	04	00	00	00
00		8.54E-	7.40E-			
00	8	05	05	3	8	8
80	~	7.64E-	1.28E-	~	~	~
09	~	05	04	~	~	~~~
90	~	7.39E-	6.59E-	~	~	~
90	~	05	05	~	~	~
91	~	5.56E-	7.48E-	~	~	~
71	~	05	05	~	~	~
92	~	8.12E-	7.01E-	~	~	~
,2	~	05	05	~	~	~
03	~	5.71E-	7.55E-	~	~	~
,5	~	05	05	~	~	~
94	~	6.00E-	1.01E-	~	~	~
24	00	05	04			00
95	~	5.20E-	1.05E-	~	~	~
,5	00	05	04			00
96	~	6.09E-	6.67E-	~	~	~
50	~~	05	05	~	~	~
97	~	4.72E-	1.09E-	~	~	~
51	~~~	05	04	~	~	~
98	~	6.03E-	6.52E-	~	~	~
20		05	05			
99	~	6.94E-	4.54E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~
,,		05	04			
100	~	7.22E-	3.08E-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
100		05	04			
Average	~	2.05E-	3.49E-	~	~	~
Average		04	04			

Case 8:	Transition	matrix	of	stochastic	(SM)	and	periodic
(Figure	9)		Ű				•

TABLE 17.	Average Number of Iterations in the Consensus for
Stochastic	(SM) and Periodic Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	8	1	8	8	8	8
2	8	1	ø	8	8	8
3	8	1	8	8	8	8
4	8	1	ø	ø	ø	8
5	8	1	8	8	8	8
6	8	1	×	8	×	8
7	8	1	8	8	8	8
8	8	1	8	8	8	8
9	8	1	8	8	8	8
10	8	1	8	8	8	8
11	8	1	8	8	8	8
12	8	1	8	8	8	8
13	8	1	8	8	8	8
14	8	1	8	∞	8	8

TABLE 17. (Continued.) Average Number of Iterations in the Consensus for Stochastic (SM) and Periodic Matrix.

15	8	1	8	00	8	∞
16	ø	1	ø	8	×	∞
17	8	1	x	8	×	8
18	8	1	s	8	×	8
19	8	1	s	ø	×	ø
20	8	1	×	8	×	8
21	8	1	ø	8	ø	8
22	8	1	8	8	8	8
23	8	1	8	8	8	8
24	ø	1	ø	ø	8	ø
25	8	1	8	8	ø	8
26	8	1	8	8	8	8
27	8	1	ø	8	×	8
28	8	1	8	8	8	8
29	ø	1	ø	8	8	ø
30	8	1	8	8	8	8
31	8	1	ø	8	ø	8
32	8	1	8	8	8	8
33	8	1	8	8	×	8
34	8	1	8	8	ø	8
35	8	1	8	ø	×	ø
36	8	1	8	8	8	8
37	ø	1	ø	ø	8	8
38	8	1	8	8	8	8
39	ø	1	ø	ø	∞	œ
40	ø	1	ø	8	∞	8
41	8	1	8	8	8	8
42	∞	1	ø	8	∞	00
43	ø	1	ø	8	8	8
44	ø	1	ø	ø	∞	œ
45	ø	1	ø	ø	∞	ø
46	∞	1	∞	∞	∞	8
47	8	1	8	∞	∞	×
48	ø	1	ø	ø	∞	ø
49	8	1	∞	~~~~	∞	∞
50	8	1	8	∞	∞	×
51	∞	1	ø	∞	∞	∞
52	∞	1	∞	8	∞	∞
53	8	1	8	8	∞	8
54	×	1	ø	œ	×	∞
55	×	1	ø	ø	8	∞
56	8	1	8	8	∞	8
57	8	1	8	ø	×	8

TABLE 17. (Continued.) Average Number of Iterations in the Consensus for Stochastic (SM) and Periodic Matrix.								
	58	ø	1	8	8	∞	8	
	59	8	1	8	8	ø	8	
	60	8	1	8	8	8	8	
	61	8	1	8	8	8	8	l

60	8	1	∞	8	8	8
61	œ	1	∞	∞	8	8
62	8	1	8	8	8	ø
63	8	1	8	8	8	ø
64	8	1	8	8	8	8
65	8	1	8	8	8	8
66	8	1	8	8	8	8
67	8	1	8	8	8	8
68	ø	1	ø	ø	8	ø
69	ø	1	ø	ø	8	ø
70	ø	1	ø	ø	8	ø
71	ø	1	ø	ø	8	ø
72	ø	1	ø	ø	8	ø
73	ø	1	ø	ø	~	ø
74	ø	1	ø	ø	8	ø
75	ø	1	ø	ø	8	ø
76	ø	1	ø	ø	ø	ø
77	ø	1	ø	ø	8	ø
78	ø	1	ø	ø	8	ø
79	ø	1	ø	ø	8	ø
80	ø	1	ø	ø	ø	ø
81	ø	1	ø	ø	8	ø
82	œ	1	ø	ø	ø	ø
83	ø	1	ø	ø	∞	ø
84	ø	1	ø	ø	8	ø
85	ø	1	ø	ø	ø	ø
86	ø	1	00	00	8	ø
87	ø	1	ø	00	8	ø
88	ø	1	ø	00	8	ø
89	8	1	ø	ø	8	ø
90	œ	1	ø	00	8	ø
91	ø	1	ø	ø	8	∞
92	ø	1	ø	ø	8	∞
93	×	1	ø	ø	8	ø
94	∞	1	ø	ø	8	ø
95	×	1	ø	ø	8	ø
96	ø	1	ø	ø	~	ø
97	ø	1	ø	ø	8	∞
98	∞	1	00	8	8	ø
99	∞	1	00	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
100	ø	1	ø	ø	00	ø
Average	ø	1	œ	ø	ø	Ø

 TABLE 18.
 Average Time spent to achieve Consensus for Stochastic (SM) and Periodic Matrix.

TABLE 18. (Continued.) Average Time spent to achieve Consensus for Stochastic (SM) and Periodic Matrix.

Tests No	DGM	EDGM	CSQO	DSQO	EDSQO	Olfati- Saber model
1	ø	8.50E- 03	8	8	8	×
2	ø	0.0055	8	8	8	ø
3	ø	4.34E- 04	8	8	8	ø
4	ø	1.74E- 04	8	8	8	ø
5	8	0.0013	8	8	8	8
6	ø	1.55E- 04	8	ø	ø	ø
7	ø	4.89E- 04	∞	∞	∞	×
8	ø	1.34E- 04	8	8	8	ø
9	8	1.65E- 04	8	8	8	8
10	ø	1.60E- 04	8	8	8	ø
11	ø	6.39E- 04	8	8	00	8
12	ø	1.12E- 04	8	8	8	ø
13	ø	1.37E- 04	8	ø	ø	ø
14	×	2.51E- 04	8	8	8	ø
15	8	1.31E- 04	8	8	8	×
16	8	1.48E- 04	8	8	8	8
17	ø	1.53E- 04	8	8	8	ø
18	8	1.12E- 04	8	8	8	8
19	8	1.71E- 04	8	8	8	8
20	ø	1.40E- 04	8	8	8	ø
21	ø	2.00E- 04	8	8	8	ø
22	ø	2.94E- 04	8	8	8	ø
23	8	1.25E- 04	8	8	8	8
24	ø	1.81E- 04	8	8	8	ø
25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.40E- 04	8	8	8	8
26	8	2.24E- 04	8	8	8	ø
27	8	1.41E- 04	8	8	8	ø
28	8	1.45E- 04	8	8	8	ø
29	ø	1.15E- 04	8	Ø	8	ø
30	ø	1.27E- 04	8	8	8	ø
31	ø	1.55E- 04	8	8	8	ø
32	ø	1.25E- 04	8	8	ø	ø
33	8	1.18E- 04	8	8	8	8

34	∞	1.21E- 04	∞	×	∞	∞
35	ø	1.27E- 04	8	ø	8	8
36	ø	1.29E- 04	8	ø	8	ø
37	ø	1.11E- 04	8	ø	8	8
38	ø	3.95E- 04	8	ø	8	ø
39	ø	9.88E- 05	8	ø	8	8
40	8	9.90E- 05	8	ø	8	8
41	×	1.53E- 04	8	ø	8	8
42	8	1.16E- 04	8	8	8	8
43	8	9.49E- 04	8	8	8	8
44	8	1.30E- 04	8	ø	8	8
45	ø	1.08E- 04	8	ø	8	ø
46	∞	1.38E- 04	8	ø	8	∞
47	ø	1.22E- 04	8	ø	8	8
48	8	1.05E- 04	8	ø	8	8
49	ø	1.43E- 04	8	ø	8	8
50	8	1.50E- 04	8	8	8	8
51	ø	4.14E- 04	8	ø	8	ø
52	~	2.35E- 04	8	ø	8	∞
53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.24E- 04	8	ø	8	ø
54	ø	2.94E- 04	8	ø	8	8
55	ø	1.51E- 04	8	ø	8	œ
56	ø	1.39E- 04	8	ø	8	8
57	ø	1.87E- 04	8	ø	8	ø
58	×	1.32E- 04	ø	ø	ø	ø
59	∞	2.91E- 04	ø	ø	ø	ø
60	∞	1.20E- 04	ø	ø	×	×
61	∞	1.17E- 04	×	ø	ø	ø
62	∞	1.01E- 04	ø	ø	×	ø
63	∞	1.28E- 04	ø	ø	ø	ø
64	∞	1.25E- 04	ø	ø	ø	ø
65	∞	1.36E- 04	ø	ø	ø	ø
66	∞	2.87E- 04	ø	ø	ø	ø
67	∞	3.38E- 04	ø	ø	ø	ø
68	8	1.92E- 04	8	ø	8	8

TABLE 18. (Continued.) Average Time spent to achieve Consensus for Stochastic (SM) and Periodic Matrix.

69	∞	1.86E- 04	∞	∞	∞	∞
70	ø	1.55E- 04	ø	ø	8	×
71	ø	1.71E- 04	ø	ø	8	×
72	ø	1.28E- 04	ø	ø	8	×
73	ø	1.16E- 04	ø	ø	8	×
74	ø	1.56E- 04	ø	ø	8	ø
75	×	1.60E- 04	ø	ø	8	×
76	×	8.59E- 05	×	×	8	∞
77	8	1.46E- 04	ø	ø	8	×
78	×	1.58E- 04	×	ø	8	ø
79	8	1.90E- 04	ø	ø	8	∞
80	×	2.43E- 04	ø	ø	8	∞
81	ø	3.03E- 04	8	8	8	∞
82	ø	3.85E- 04	ø	ø	8	×
83	8	1.69E- 04	8	8	8	8
84	ø	1.60E- 04	ø	ø	8	×
85	ø	1.69E- 04	ø	ø	8	×
86	ø	1.71E- 04	8	8	8	×
87	ø	2.79E- 04	ø	ø	8	×
88	ø	1.25E- 04	ø	ø	8	ø
89	ø	1.66E- 04	8	8	8	ø
90	ø	1.21E- 04	ø	ø	8	ø
91	ø	2.07E- 04	ø	ø	8	ø
92	ø	2.30E- 04	ø	ø	8	œ
93	ø	1.37E- 04	ø	ø	8	∞
94	∞	1.46E- 04	~	~	8	∞
95	ø	1.30E- 04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ø	8	ø
96	∞	2.14E- 04	8	~	8	~
97	∞	1.13E- 04	∞	~	8	∞
98	∞	1.34E- 04	~	~	8	∞
99	∞	3.09E- 04	~	~	8	∞
100	∞	1.51E- 04	~	~	8	∞
Average	œ	3.35E- 04	ø	ø	8	œ

ACKNOWLEDGMENT

The authors would like to thank the Faculty of Information and Communication Technology, International Islamic University Malaysia.

REFERENCES

- [1] W. Ren, R. W. Beard, and E. M. Atkins, "A survey of consensus problems in multi-agent coordination," in Proc. Amer. Control Conf., 2005,
- pp. 1859–1864. M. Wooldridge, An Introduction to Multiagent Systems. Hoboken, NJ, [2] USA: Wiley, 2009.
- [3] Z. Lin, B. Francis, and M. Maggiore, "State agreement for continuoustime coupled nonlinear systems," SIAM J. Control Optim., vol. 46, no. 1, pp. 288–307, Jan. 2007. [4] J.-G. Dong and L. Qiu, "Complex Laplacians and applications in
- multi-agent systems," 2014, arXiv:1406.1862. [Online]. Available: http://arxiv.org/abs/1406.1862
- [5] R. Abdulghafor, S. Almotairi, H. Almohamedh, S. Turaev, and B. Almutairi, "Nonlinear consensus protocol modified from doubly stochastic quadratic operators in networks of dynamic agents," Symmetry, vol. 11, no. 12, p. 1519, Dec. 2019.
- [6] R. Abdulghafor, S. Almotairi, H. Almohamedh, B. Almutairi, A. Bajahzar, and S. S. Almutairi, "A nonlinear convergence consensus: Extreme doubly stochastic quadratic operators for multi-agent systems," Symmetry, vol. 12, no. 4, p. 1519, 2020.
- [7] R. Abdulghafor, H. Almohamedh, B. Almutairi, S. Wani, A. Alharbi, S. S. Almutairi, and S. Almotairi, "EDSQ operator on 2DS and limit behavior," Symmetry, vol. 12, no. 5, p. 820, May 2020. F. Fagnani, "Consensus dynamics over networks," Tech. Rep., 2014,
- [8] vol. 66
- [9] R. Abdulghafor, S. S. Abdullah, S. Turaev, and R. Hassan, "The nonlinear limit control of EDSQOs on finite dimensional simplex," Automatika, vol. 60, no. 4, pp. 404-412, Oct. 2019.
- [10] R. Abdulghafor, F. Shahidi, A. Zeki, and S. Turaev, "Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex," Open Math., vol. 14, no. 1, pp. 509–519, Jan. 2016. [11] R. Abdulghafor, F. Shahidi, A. Zeki, and S. Turaev, "Dynamics classifica-
- tions of extreme doubly stochastic quadratic operators on 2D simplex," in Proc. Adv. Comput. Commun. Eng. Technol. Cham, Switzerland: Springer, 2016, pp. 323-335
- [12] R. Abdulghafor, S. Turaev, and A. Zeki, "Necessary and sufficient conditions for complementary stochastic quadratic operators of finitedimensional simplex," Sukkur IBA J. Comput. Math. Sci., vol. 1, no. 1, pp. 22–27, 2017. [13] F. Shahidi, R. Ganikhodzhaev, and R. Abdulghafor, "The dynamics of
- some extreme doubly stochastic quadratic operators," Middle East J. Sci. Res., vol. 13, pp. 59-63, 2013.
- [14] R. Abdulghafor, S. Turaev, A. Abubakar, and A. Zeki, "The extreme doubly stochastic quadratic operators on two dimensional simplex," in Proc. 4th Int. Conf. Adv. Comput. Sci. Appl. Technol. (ACSAT), Dec. 2015, p. 192–197
- [15] Î. Gabriel, V. Negru, and D. Zaharie, "Neuroevolution based multi-agent system with ontology based template creation for micromanagement in real-time strategy games," Inf. Technol. Control. vol. 43, no. 1, pp. 98-109, Mar. 2014.
- [16] E. Lovisari and S. Zampieri, "Performance metrics in the consensus problem: A survey," IFAC Proc. Volumes, vol. 43, no. 21, pp. 324-335, 2010.
- [17] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, "Novel type of phase transition in a system of self-driven particles," Phys. Rev. Lett., vol. 75, no. 6, pp. 1226-1229, Aug. 1995.
- [18] J. Tsitsiklis, D. Bertsekas, and M. Athans, "Distributed asynchronous deterministic and stochastic gradient optimization algorithms," IEEE *Trans. Autom. Control*, vol. 31, no. 9, pp. 803–812, Sep. 1986. [19] D. P. Bertsekas and J. N. Tsitsiklis, "Comments on 'coordination of groups
- of mobile autonomous agents using nearest neighbor rules," IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 968–969, May 2007. [20] M. H. DeGroot, "Reaching a consensus," J. Amer. Statist. Assoc., vol. 69,
- no. 345, pp. 118-121, Mar. 1974.
- [21] F. Cucker, S. Smale, and D.-X. Zhou, "Modeling language evolution," Found. Comput. Math., vol. 4, no. 3, pp. 315-343, 2004.
- [22] P. Veltri, "Algorithms and tools for analysis and management of mass spectrometry data," Briefings Bioinf., vol. 9, no. 2, pp. 144-155, Sep. 2007.
- [23] R. L. Berger, "A necessary and sufficient condition for reaching a consensus using DeGroot's method," J. Amer. Stat. Assoc., vol. 76, no. 374, pp. 415-418, Jun. 1981.

- [24] J. Tsitsiklis, "Problems in decentralized decision-making and computation," DTIC Document, Cambridge Lab Inf. Decis. Syst., Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep. LIDS-TH-1424, 1984.
 [25] A. Jadbabaie, J. Lin, and A. S. Morse, "Coordination of groups of mobile
- [25] A. Jadbabaie, J. Lin, and A. S. Morse, "Coordination of groups of mobile autonomous agents using nearest neighbor rules," *IEEE Trans. Autom. Control*, vol. 48, no. 6, pp. 988–1001, Jun. 2003.
- [26] R. Olfati-Saber and R. M. Murray, "Consensus problems in networks of agents with switching topology and time-delays," *IEEE Trans. Autom. Control*, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.
 [27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and coop-
- [27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," *Proc. IEEE*, vol. 95, no. 1, pp. 215–233, Jan. 2007.
- [28] A. Nedic and A. Ozdaglar, "On the rate of convergence of distributed subgradient methods for multi-agent optimization," in *Proc. IEEE Conf. Decis. Control*, Dec. 2007, vol. 54, no. 1, pp. 4711–4716.
- [29] A. G. Olshevskii and J. N. Tsitsiklis, "Convergence speed in distributed consensus and control," *SIAM Rev.*, vol. 53, no. 4, pp. 747–772, 2006.
 [30] C. F. Cheng, K. T. Tsai, and H. C. Liao, "Simple and efficient signature-
- [30] C. F. Cheng, K. T. Tsai, and H. C. Liao, "Simple and efficient signature-based consensus protocol in the asynchronous distributed system," *Inf. Technol. Control*, vol. 41, no. 2, pp. 183–198, Jun. 2012.
 [31] T. Sun, Y. Pan, and H. Yu, "Leader-based consensus of heterogeneous
- [31] T. Sun, Y. Pan, and H. Yu, "Leader-based consensus of heterogeneous nonlinear multiagent systems," *Math. Problems Eng.*, vol. 2014, pp. 1–6, Jan. 2014.
- [32] R. Abdulghafor, S. S. Abdullah, S. Turaev, A. Zeki, and I. Al-Shaikhli, "Linear and nonlinear stochastic distribution for consensus problem in multi-agent systems," *Neural Comput. Appl.*, vol. 32, no. 1, pp. 261–277, 2018.
- [33] G. Cui, Q. Ma, B. Zhang, F. L. Lewis, and S. Xu, "Distributed consensus tracking for non-linear multi-agent systems with input saturation: A command filtered backstepping approach," *IET Control Theory Appl.*, vol. 10, no. 5, pp. 509–516, Mar. 2016.
- [34] L. Yu-Mei and G. Xin-Ping, "Nonlinear consensus protocols for multi-agent systems based on centre manifold reduction," *Chin. Phys. B*, vol. 18, no. 8, pp. 3355–3366, Aug. 2009.
 [35] Y. Li, X. Guan, and C. Hua, "Nonlinear protocols for output performance
- [35] Y. Li, X. Guan, and C. Hua, "Nonlinear protocols for output performance value consensus of multi-agent systems," in *Proc. 30th Chin. Control Conf.* (CCC), 2011, pp. 4831–4834.
- [36] R. Abdulghafor and S. Turaev, "Consensus of fractional nonlinear dynamics stochastic operators for multi-agent systems," *Inf. Fusion*, vol. 44, pp. 1–21, Nov. 2018.
- [37] R. Abdulghafor, S. Turaev, A. Zeki, and I. Al-Shaikhli, "Reach a nonlinear consensus for MAS via doubly stochastic quadratic operators," *Int. J. Control*, vol. 91, no. 6, pp. 1431–1459, Jun. 2018.
 [38] R. Abdulghafor, S. Turaev, and M. Izzuddin, "Nonlinear consensus
- [38] R. Abdulghafor, S. Turaev, and M. Izzuddin, "Nonlinear consensus for multi-agent systems using positive intractions of doubly stochastic quadratic operators," *Int. J. Perceptive Cognit. Comput.*, vol. 2, no. 1, pp. 19–22, Jun. 2016.
 [39] R. Abdulghafor, S. S. Abdullah, S. Turaev, and M. Othman, "An overview
- [39] R. Abdulghafor, S. S. Abdullah, S. Turaev, and M. Othman, "An overview of the consensus problem in the control of multi-agent systems," *Automatika*, vol. 59, no. 2, pp. 143–157, Apr. 2018.
- [40] R. Abdulghafor, S. Turaev, A. Zeki, and A. Abubaker, "Nonlinear convergence algorithm: Structural properties with doubly stochastic quadratic operators for multi-agent systems," *J. Artif. Intell. Soft Comput. Res.*, vol. 8, no. 1, pp. 49–61, Jan. 2018.
- [41] R. Abdulghafor, S. Turaev, and M. Izzuddin, "Nonlinear models for distributed consensus modified from DSQO in networks of dynamic agents," in *Proc. 4th Int. Conf. Math. Sci.*, 2016, pp. 19–22.
 [42] R. A. S. Turaev, A. Zeki, and F. Shahidi, "The convergence consensus of
- [42] R. A. S. Turaev, A. Zeki, and F. Shahidi, "The convergence consensus of multi-agent systems controlled via doubly stochastic quadratic operators," in *Proc. Int. Symp. Agents, Multi-Agent Syst. Robot. (ISAMSR)*, Aug. 2015, pp. 59–64.

RAWAD ABDULGHAFOR received the bachelor's and master's degrees in computer systems engineering and informatics from Saint Petersburg Electrotechnical University "LETI," Russia, in 2004 and 2007, respectively, and the Ph.D. degree in information technology from International Islamic University Malaysia, Kuala Lumpur, Malaysia, in 2017. He was a Research Assistant with the Faculty of Information and Communication Technology, International Islamic University

Malaysia, from 2014 to 2017, where he has been an Assistant Professor since 2018. He was a Postdoctoral Fellow with the Malaysia-Japan International

Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, from 2018 to 2019. His research interests include consensus models for multi-agent systems, natural body language, computation theory, wireless communications, and information security.

HAMAD ALMOHAMEDH received the bachelor's and master's degrees in software engineering and the Ph.D. degree in computer engineering from the Florida Institute of Technology, in 2010, 2011, and 2015, respectively. He is currently an Academic Researcher with the King Abdulaziz City for Science and Technology (KACST). His research interests include artificial intelligent, algorithm, software engineering, information security, software development, and image and video quality.

ABDULLAH R. ALHARBI received the Master of Science degree in information technology from the Rochester Institute of Technology, Rochester, NY, USA, and the master's degree in information assurance and cybersecurity and the Ph.D. degree in computer science from the Florida Institute of Technology, Melbourne, FL, USA, where he also got the Information Assurance and Cybersecurity Graduate Certificate. He is currently an Assistant Professor of computer science with King Saud

University, Riyadh, Saudi Arabia. He is also with the Department of Administrative Sciences Head, Riyadh Community College, King Saud University. He is also a Research Fellow with the Center of Excellence for Information Assurance, King Saud University. His research interests include wearable devices security, transparent and continuous security, alternative authentication, usable security, and behavioral biometrics.

MOTEEB A. AL MOTERI received the B.Sc. degree in computer science (information assurance emphasis) from the University of Findlay, OH, USA, in 2010, the M.Sc. degree in information security and assurance from Robert Morris University, PA, USA, in 2012, and the Ph.D. degree in computer science from the Florida Institute of Technology, FL, USA, in 2017. He has been an Assistant Professor with the Department of MIS, Business Administration College, King Saud Uni-

versity, since February 2018, and the Chairman of the MIS Department, King Saud University, since January 2019. His research interests include cloud security, security shared responsibility, information security strategies, information security management, cyber security GRC, and computer vision.

SULTAN ALMOTAIRI received the B.Sc., M.Sc., and Ph.D. degrees in computer science from the Florida Institute of Technology, Melbourne, USA, in 2010, 2012, and 2014, respectively. He is currently an Associate Professor with the Department of Natural and Applied Sciences, Community College, Majmaah University. He has acted as the Dean of the Community College, Majmaah University, since June 2015. In 2016, he was elected as the Chairman of the Municipality Council of Maj-

maah. His research interests include neural networks, deep learning, pattern recognition, machine learning, image processing, and computer vision.