INTRODUCTION

Antimicrobials combination therapy has been used to treat infections for decades, with the goal of achieving synergistic effects, producing wider spectrums of coverage and minimizing any toxicity effects of conventional antimicrobial agents (Odds, 2003). Plant metabolites are among the suitable candidates to be used as antimicrobial and synergistic agents, which can help mankind to curb the evolution of drug-resistant strains of microbes. *S. aureus* is commonly treated with the penicillin group antibiotics such as ampicillin. However, *S. aureus* resistance to these antibiotics is kept on increasing and the therapeutic failures, caused by antimicrobial resistance reactions. Curcuminoids, which are responsible for the yellow colour of turmeric possess bio-protective properties including promising antimicrobial activity (Goel, 2007; Foryst-Ludwig et al., 2004) with very low incidence of toxicity (Quereshi et al., 1992). For these reasons, our research effort turned to the antimicrobial combination study between ampicillin and curcuminoids in a view to enhance antimicrobial efficacy and developing safer drugs.

RESULTS

- The antimicrobial activity studies showed that the combination of ampicillin with curcuminoids fraction is likely to reduce the MIC of ampicillin compared with when tested alone against both strains of *S. aureus*.
- The results highlighted the occurrence of a pronounced synergism between 312.50 μg/ml of curcinoids fraction and 1.56 μg/ml of ampicillin against the clinical strain with Fractional Inhibitory Concentration Index (FICI) of 0.25.

Table 1: Antimicrobial activity of curcuminoids fraction from the rhizomes of *C. longa* alone and in combination with ampicillin.

<table>
<thead>
<tr>
<th>Microbial strain</th>
<th>Combination</th>
<th>MIC (μg/ml)</th>
<th>FIC</th>
<th>FICI</th>
<th>Combined effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 29523</td>
<td>Curcuminoids fraction</td>
<td>25.00</td>
<td>25.00</td>
<td>1.00</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Ampicillin</td>
<td></td>
<td>0.24</td>
<td>0.12</td>
<td>0.5</td>
</tr>
<tr>
<td>S. aureus (clinical strain)</td>
<td>Curcuminoids fraction</td>
<td>2500.00</td>
<td>312.50</td>
<td>0.125</td>
<td>0.25 Synergistic</td>
</tr>
<tr>
<td></td>
<td>Ampicillin</td>
<td></td>
<td>12.5</td>
<td>1.56</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Fractional inhibitory concentration index (FICI) values < 0.5 are considered to indicate synergism; 0.5-4.0, additive; >4, antagonism (Odds, 2003).

Figure 1: Chequeboard assay of curcuminoids-ampicillin combination against clinical strain of *S. aureus*.

Key:
- Concentration (μg/ml) for Ampicillin: 1: 50, 2: 25, 3: 12.5, 4: 6.25, 5: 3.12, 6: 1.56, 7: 0.76.

(Addition of MTT revealed inhibited microbial growth as yellow colour whereas purple colour indicated the existence of microbial growth)

- indicate MIC point, i.e the lowest concentration without microbial growth.
- MIC point in combination

FIC Index = MIC of curcuminoids in combination/MIC of curcuminoids alone + MIC of ampicillin in combination/MIC of ampicillin alone

FIC Index = 0.25 (synergistic effect)

CONCLUSION

In summary, this study shows that curcuminoids from *C. longa* extract have potential advantages over traditional compounds for antimicrobial and synergistic effects such as high potentiation agents. Curcumin, demethoxycurcumin and biodemethoxycurcumin are promising synergistic agents for antimicrobial combination therapy with ampicillin. The synergistic combination is found useful in controlling *S. aureus* resistance towards ampicillin and minimizing the undesired effects of ampicillin.

MATERIALS AND METHODS

(1) Extraction of plant materials

200 g dried powdered rhizomes of *C. longa* was extracted consecutively with hexane and dichloromethane (DCM). Each extract was concentrated to dryness by using rotatory evaporator. The DCM extract were then was fractionated through column chromatography to furnish curcuminoids fraction.

(2) Antimicrobial activity tests

Microbial strains

Two strains of *Staphylococcus aureus* were used, namely *S. aureus* ATCC 25923 and clinical isolate, which was obtained from patient diagnosed as having *S. aureus* infection at Hospital Tuanku Ampuan Atzah (HTAA), Kuantan.

Two antimicrobial assays

(a) Broth Microdilution Assay

This assay was performed to determine the MIC values of curcuminoids fraction and ampicillin.

(b) Chequeboard Assay

The antimicrobial activity of curcuminoids fraction in combination with ampicillin was determined according to the method described by Wei and Bobek, 2004.

(c) Bioautographic Agar Overlay Assay

This assay was performed according to the method described by Rahalison et al., 1991, with the aim to screen the antimicrobial active curcuminoids from the tested fraction, which responsible for antimicrobial synergistic effects.

Figures 2 and 3: Bioautographic profile of curcuminoids fraction from DCM extract of *C. longa* against *S. aureus*.

REFERENCES

ACKNOWLEDGEMENT

The author is indebted to all the Kuliyyah of Pharmacy staffs for their support to make this work possible and also a special thanks to the Kuliyyah of Pharmacy for financial assistance.