

Journal of the Society of Automotive Engineers Malaysia
Volume 4, Issue 1, pp 73-81, January 2020

e-ISSN 2550-2239 & ISSN 2600-8092

73

Software Optimization of Vision-Based Around View

Monitoring System on Embedded Platform

N. H. Mahamud*1, Z. Zainal Abidin**1, H. F. Mohd Zaki1, Y. Mohd Mustafah1, W. Sediono1,

H. Abd Rahman2, S. Hanizam1, M. A. A. Abdul Matin1 and N. S. Ahmad Rudin1

1Centre for Unmanned Technologies (CUTe), Kulliyyah of Engineering, International Islamic

University Malaysia, 53100, Kuala Lumpur, Malaysia
2Delloyd R&D (M) Sdn. Bhd., Jln. Kebun, Kampung Jawa, 41000 Klang, Selangor, Malaysia

Corresponding authors: *hidayah.smksb@gmail.com.my; **zzulkifli@iium.edu.my

ORIGINAL ARTICLE Open Access

Article History:

Received

14 Sep 2019

Received in

revised form

30 Nov 2019

Accepted

1 Dec 2019

Available online
1 Jan 2020

Abstract – Image processing algorithm requires high computational

power. Optimizing the algorithm to be run on an embedded platform is very
critical as the platform provides limited computational resources. This

research focused on optimizing and implementing a vision-based Around

View Monitoring (AVM) system running on two embedded boards of

Cortex-A7 quad and Cortex-A15 quad-core, and desktop platform of Intel
i7 core. This paper presented a study on several techniques of software

optimization that is removing code redundancy and multi-threading. The

two methods improve the total processing time of the AVM system by 45%
on ARM Cortex-A15 and 47% on ARM Cortex-A7.

Keywords: Embedded platform, image processing, software optimization,

Advanced Driver Safety System (ADAS), vision-based ADAS, AVM system

Copyright © 2020 Society of Automotive Engineers Malaysia - All rights reserved.

Journal homepage: www.jsaem.saemalaysia.org.my

1.0 INTRODUCTION

Around View Monitoring (AVM) system can be classified as a part of the Advanced Driver

Safety System (ADAS). AVM system provides a 360-degree view of the vehicle’s

surroundings. For any safety application, a real-time operation is a basic requirement that needs

to be fulfilled together with the system accuracy (Ahmad Rudin et al., 2018). On the other

hand, the image processing algorithm requires high computational power. Implementing a

vision-based system on an embedded Advanced RISC Machine (ARM) platform while

maintaining the high-performance system requirement is becoming a great challenge. ARM

core is commonly used for the embedded platform as it is developed to give the best

performance for an embedded board with lower processing power required.

A lot of researches have been carried out to explore effective optimization methods for

vision-based system running on an embedded ARM platform. The optimization will greatly

affect the overall performance, power dissipation and overall cost of a system (Park et al.,

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

74

2013). This paper presents several software optimization methods to be applied on existing

vision-based AVM system project running on an embedded platform.

2.0 RELATED WORKS

Generally, optimization techniques on embedded can be summarized to several categories such

as compiler optimization, source code modification, memory optimization and hardware-level

optimization (ARM, 2014). Several pieces of research focused on optimization of the

developed system that utilizes the embedded multi-core system (Ma & Wang, 2016), memory

management (Muck & Frohlich, 2011; Lei & Xiao-ya, 2011), hardware and system-level

optimization (Dekkiche et al., 2016; Dedeoğlu et al., 2011; Singhal et al., 2012) and software

optimization (Park et al., 2013; Joshi & Gurumurthy, 2014).

Multi-processing and multi-threading are effective to greatly reduce the processing time

of an application by running several tasks concurrently. Ma and Wang (2016) discussed on

parallel computing framework on a multi-core system using single-threading, multi-threading

and parallel computing using OpenMP. It can be concluded that the correct implementation of

parallel computing can greatly improve the speedup of a program execution. Equally important,

synchronization is very critical in any parallel processing task.

Based on research by Park et al. (2013) and Joshi & Gurumurthy (2014), loop

transformation techniques generally reduce the number of iterations and loop overhead that

assist in increasing the execution time and code density of applications running on embedded

ARM. Examples of loop transformations are loop termination, loop unrolling, loop reversal,

loop unswitching, and loop fusion.

GNU Compiler Collection (GCC) also provides several optimization flags that can be

enabled during the compilation process (ARM, 2014). General optimizations include (1) -O0

for no optimization, (2) -O1 for common, basic optimization methods, (3) -O2 for additional

optimization such as instruction scheduling, (4) -O3 for powerful optimization that helps to

produce faster application but at the same time increases the program size and lastly (5) -Os

that focused to decrease the size of program but may decrease the processing speed.

Other optimization methods include kernel-level optimization (Dekkiche et al., 2016)

and the use of GPU and DSP processor to support parallel computing of multimedia

programming such as audio, image and video processing (Dedeoğlu et al., 2011; Singhal et al.,

2012)

3.0 METHODOLOGY

3.1 System Setup

This subchapter will discuss the overview of the AVM system to be implemented and details

of the embedded ARM platform used for testing. The application runs on two embedded boards

of different specifications and a desktop for a performance comparison.

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

75

3.1.1 Vision-based AVM system

This research work focused on optimizing a vision-based 1-input AVM system. The AVM

system primarily involves image-stitching and motion estimation. Image stitching will create

a continuous image of the surrounding vehicle based on input from one camera allocated at the

front or rear of the vehicle. The area of the image to be stitch depends on the speed and angle

of the vehicle.

This system integrates the motion estimation technique based on block matching methods

to determine the region of the image to be stitch. The algorithm will search every pixel or a

block of the pixel from the current frame and compare it to a reference called template taken

from the previous frame. From the block matching detection, the motion of the vehicle can be

calculated.

The AVM application mainly used the OpenCV library for image processing tasks.

OpenCV is an open-source computer vision library that provides a large support for optimized

image processing algorithm. OpenCV also provides NEON instruction support on some part

of the library function. This greatly helps to optimize the execution of the image processing

task on the ARM platform.

The AVM application is developed using QT Creator Integrated Design Environment

(IDE), running on Ubuntu 16.04 LTS. To run the AVM system on an embedded ARM platform,

the source code will be cross-compiled using an SDK of the targeted platform. The cross-

compile step will create a compatible binary file to be run on the targeted board. During the

compilation process, compiler optimization -O3 in enabled.

3.1.2 Renesas R-Car H2 (ARM Cortex-A15)

R-Car H2 is a development board introduced by Renesas Electronics Corporation that targeted

a high-performance System on Chip (SoC) for the automotive industry (Renesas, n.d.). The

board incorporates the ARM Cortex-A15 quad operating at 1.5 GHz based on 32-bit ARMv7

CPU architecture. Each core supports Vector Floating Point v4 Extension (VFPv4) and NEON

instruction set technology (Advanced SIMD instruction). NEON helps to improve multimedia

operations such as audio and video processing and computer vision. The board also includes

Imagination's PowerVR G6400 GPU operating at 550 MHz. The R-Car H2 development board

runs of Linux based operating system. Figure 1 shows a demonstration of the AVM system

running on the Renesas R-Car H2 development board.

3.1.3 Telechip TCC 8971 (ARM Cortex-A7)

TCC 8971 is an automotive-grade SoC with powerful multimedia support with low power

consumption (Telechips, n.d.). TCC 8971 incorporates ARM Cortex A7-Quad (1.0 GHz) based

on 32-bit ARMv7 CPU architecture. Each core supports NEON instruction set technology. It

also includes 2D/3D Graphic support including MALI400 GPU MP2 and GC300 for 2D. The

system runs on a Linux-based operating system. Figure 2 shows the AVM system running on

the Telechip TCC8971 development board.

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

76

Figure 1: AVM system running on Renesas R-Car H2

Figure 2: AVM system running on Telechip TCC8971

3.1.4 Desktop Platform (Intel Core i7)

The desktop platform incorporates 64-bit, Quad Intel Core i7 chip operating at 2.40 GHz. The

platform runs Linux based operating system of Ubuntu 16.04.6 LTS. It also provides graphics

engine support with Intel (R) HD Graphics 4600 and NVIDIA GeForce GT 750M. Figure 3

shows the AVM system running on the desktop platform.

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

77

Figure 3: AVM system running on a desktop platform

4.0 RESULTS AND DISCUSSION

This subchapter will discuss the optimization methods applied and discussions on the results.

4.1 Identifying Hotspot

The first step in system optimization is to determine a program hotspot or section of code that

takes a lot of processing time per frame. Important functions are timed using std::chrono

library. For benchmarking purposes, the AVM application is set to run for 3 seconds on the

desktop platform and 10 seconds on an embedded platform. The average processing time per

frame is calculated and recorded.

The AVM application is divided into several tasks to compute the timing. Figure 4 shows

the average processing time of the AVM original source code. The processing time is timed

per frame except for the GUI setup task that runs once at the program starts.

From the result, we can see that the Telechip platform takes more processing time

compared to other platforms. The initial frame per second (FPS) of the AVM application

running on Desktop, Renesas, and Telechip is 15, 5 and 2 fps respectively.

Referring to Figure 4, we can see that Motion Estimation and Process for Display takes

a great processing time per frame compared to other functions. Thus, we will be focusing more

on the optimization of the two functions.

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

78

Figure 4: Processing time of sub-functions in main process task

4.2 Removing Redundancy

Removing redundant code is an example of source code modification. We determine and

modified any unnecessary steps or instructions in the code. It reduces lines of instructions in

the source code, cycle count and even the number of memory access times.

From the AVM original source code, we identified that a variable declaration of OpenCV

cv::Mat type for the same variable has been initialized for every frame. This causes the same

initialization instruction for the same variable to be executed at every frame. Accordingly, the

part of the code is restructured to a global variable and called once at the function’s constructor

code. The percentage of improvement for the Process for Display task running on several

platforms is shown in Table 1. The percentage is calculated based on the initial processing time

of the task.

Table 1: Percentage of improvement by removing redundancy (Process for Display task)

Platform Improvement Percentage

Desktop 83.76 %

Renesas R-Car H2 67.18 %

Telechip TCC 8971 68.90 %

Desktop Renesas Telechip

GUI setup 22.51 91.07 40.53

Image PreProcessing 5.129 33.066 79.812

Motion Estimation 12.389 91.002 179.978

Image Stitching 0.41 2.678 2.399

Process for Display 14.116 47.649 91.845

Output Display 1.615 17.285 24.145

0

50

100

150

200

250

300

350

400

450

Platform

Processing Time of AVM System on Three Different
Platform

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

79

Next, variable declarations in the Motion Estimation function is reorganized. All possible

variable declarations are moved into the class’ header file. The resulted processing time

obtained for Motion Estimation function after the modification is tabulated in Table 2.

Table 2: Percentage of improvement by removing redundancy (Motion Estimation function)

Platform Improvement Percentage

Desktop 24.74 %

Renesas R-Car H2 27.25 %

Telechip TCC 8971 32.69 %

Based on the result obtained, we can conclude that the repeated initialization of variables

causes a great increase in the total execution time of the program running on an embedded

platform. Any redundant code should be restructured to be outside of a function call or any

flow control statements especially for or while loop. Generally, having a good structure of code

helps to increase the processing speed of the program.

Even though declaring a variable as global helps to prevent declaration and initialization

at every frame, it also has some disadvantages. The global variable stays at a part of the stack

for a global variable and stays in the memory for the whole execution of the program. On the

other hand, local variables allocated and deallocated a memory space whenever the function is

being used. Using a global variable may increase the program’s complexity as the variable

stays alive as long as the program is still running. The global variable is also visible to other

functions in the program. Any accidental changes by other functions may cause an error to the

whole program.

4.3 Multi-Threading

Multi-threading is a promising technique to improve the processing speed of any algorithm. A

single thread executes a single operation; thus multi-threading allows multiple operations or

tasks to be executed concurrently. C++11 enables the programmer to easily code for

multithreading using std::thread library from thread.h header file.

The Motion Estimation function used a block matching based algorithm. High processing

time is expected in the algorithm as it needs to search through every pixel block in the region

of interest. To optimize the process, the searching region is divided into two smaller regions of

interest. This will enable a searching task of one region to run on the main thread while another

searching task of the second region to run on a new thread. As a result, the processing time of

the Motion Estimation function reduces. The percentage of improvement concerning the initial

execution time is calculated and tabulated as shown in Table 3.

Table 3: Percentage of improvement by multi-threading method (Motion Estimation function)

Platform Improvement Percentage

Desktop 40.78 %

Renesas R-Car H2 40.56 %

Telechip TCC 8971 44.83 %

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

80

Based on the result obtained, by executing the block matching algorithm in multithread,

the percentage of processing time for Motion Estimation has improved on all the three

platforms by almost half.

4.4 Implementing Optimization on AVM System

All the optimization techniques tested and discussed above focus on source code modification

to improve the processing speed. We combined all the optimization methods discussed and

applied the techniques in the AVM application. The total processing time per frame is

computed and compared with the initial time. The percentage of improvement is calculated and

tabulated in Table 4.

Table 4: Percentage of total processing time improved (AVM application system)

Platform Improvement Percentage

Desktop 48.91 %

Renesas R-Car H2 45.21 %

Telechip TCC 8971 47.30 %

The final estimated FPS of the application after optimization are 39, 10 and 5 running on

Desktop, Renesas and Telechip platform respectively. The processing time improved by half

after applying the optimization method. Based on the result, the Renesas board seems to be

doing better than the Telechip board. The difference might come from the different ARM

Cortex-A core version which also has a different operating frequency. Renesas also have VFP

architecture support available on the board.

5.0 CONCLUSION AND FUTURE WORKS

In conclusion, the execution time on the desktop platform is proved to be the best because of

its powerful processing power. In comparison, even though the processing speed on ARM

development board (Renesas and Telechip) has improved, we still far from having the system

to work in real-time on an embedded platform. It is more challenging as the computer vision

algorithm itself is computationally expensive. Thus, it is critical to have a good optimization

technique that fully utilize the limited resources of the embedded platform.

More research will be done to optimize the AVM application to be able to run at real-

time speed on an embedded platform. One of the recommendations is to code part of them in a

low-level language (such as NEON) or directly accessing the kernel or memory. The

implementation of the OpenCV library also can be restructured. The use of GPU using the

CUDA and OpenCL framework can also be explored.

ACKNOWLEDGMENTS

This research was sponsored by CREST and Delloyd R&D Sdn. Bhd., under the grant CREST ID:
P11C217 (Smart Driver Assistance System).

© Journal of the Society of Automotive Engineers Malaysia
www.jsaem.saemalaysia.org.my

81

REFERENCES

Ahmad Rudin, N.S., Mohd Mustafah, Y., Zainal Abidin, Z., Cho, J., Mohd Zaki, H.F., Nik Hashim,
N.N.W., & Abdul Rahman, H. (2018). Vision-based Lane Departure Warning System. Journal

of the Society of Automotive Engineers Malaysia, 2(2), 166-176.

ARM (2014). ARM Cortex-A series: Programmer’s guide. England: ARM Limited.

Dedeoğlu, G., Kisačanin, B., Moore, D., Sharma, V., & Miller, A. (2011). An optimized vision library
approach for embedded systems. Proceedings of the IEEE Workshop on Embedded Computer

Vision 2011, 8-13. doi: 10.1109/CVPRW.2011.5981731

Dekkiche, D., Vinck, B., & Merigot, A. (2016). Targeting system-level and kernel-level optimizations
of computer vision applications on embedded systems. Proceedings of the Sixth International

Symposium on Embedded Computing and System Design (ISED). doi: 10.1166/jolpe.2017.1510

Joshi, P.V., & Gurumurthy, K.S. (2014). Analysing and improving the performance of software code
for real time embedded systems. Proceedings of the 2nd International Conference on Devices,

Circuits and Systems (ICDCS), 1-5. doi: 10.1109/ICDCSyst.2014.6926134

Lei, W., & Xiao-ya, F. (2011). Study on L2 cache of multi-core processor and optimization for

embedded. Proceedings of the 2011 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), 1-5. doi: 10.1109/ICSPCC.2011.6061647

Ma, W., & Wang, Z. (2016). Performance analysis of parallel computing framework on embedded

multi-core trustworthy systems. Proceedings of the International Symposium on System and
Software Reliability (ISSSR), 25-59. doi: 10.1109/isssr.2016.01

Muck, T.R., & Frohlich, A.A. (2011). Run-time scratch-pad memory management for embedded

systems. Proceedings of the IECON – 37th Annual Conference of the IEEE Industrial Electronics

Society, 2833-2838). doi: 10.1109/IECON.2011.6119761

Park, I., Lee, H., & Lee, H. (2013). Software optimization for embedded communication systems.

Proceedings of the International Conference on Information Networking 2013 (ICOIN), 676-679.

doi: 10.1109/ICOIN.2013.6496708

Renesas (n.d.). R-Car H2. Tokyo, Japan: Renesas Electronics Corporation. Retrieved from

https://www.renesas.com/sg/en/solutions/automotive/soc/r-car-h2.html

Singhal, N., Yoo, J., Choi, H., & Park, I. (2012). Implementation and optimization of image processing
algorithms on embedded GPU. IEICE Transactions on Information and Systems, E95-D(5),

1475-1484.

Telechips (n.d.). Intelligent automotive solution for driving & entertainment. Seoul, Korea: Telechips

Inc. Retrieved from https://www.telechips.com/eng/product/automotive.php

