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Abstract – Image processing algorithm requires high computational 

power. Optimizing the algorithm to be run on an embedded platform is very 
critical as the platform provides limited computational resources. This 

research focused on optimizing and implementing a vision-based Around 

View Monitoring (AVM) system running on two embedded boards of 

Cortex-A7 quad and Cortex-A15 quad-core, and desktop platform of Intel 
i7 core. This paper presented a study on several techniques of software 

optimization that is removing code redundancy and multi-threading. The 

two methods improve the total processing time of the AVM system by 45% 
on ARM Cortex-A15 and 47% on ARM Cortex-A7. 
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1.0 INTRODUCTION 

Around View Monitoring (AVM) system can be classified as a part of the Advanced Driver 

Safety System (ADAS). AVM system provides a 360-degree view of the vehicle’s 

surroundings. For any safety application, a real-time operation is a basic requirement that needs 

to be fulfilled together with the system accuracy (Ahmad Rudin et al., 2018). On the other 

hand, the image processing algorithm requires high computational power. Implementing a 

vision-based system on an embedded Advanced RISC Machine (ARM) platform while 

maintaining the high-performance system requirement is becoming a great challenge. ARM 

core is commonly used for the embedded platform as it is developed to give the best 

performance for an embedded board with lower processing power required.   

A lot of researches have been carried out to explore effective optimization methods for 

vision-based system running on an embedded ARM platform. The optimization will greatly 

affect the overall performance, power dissipation and overall cost of a system (Park et al., 
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2013). This paper presents several software optimization methods to be applied on existing 

vision-based AVM system project running on an embedded platform. 

2.0 RELATED WORKS 

Generally, optimization techniques on embedded can be summarized to several categories such 

as compiler optimization, source code modification, memory optimization and hardware-level 

optimization (ARM, 2014). Several pieces of research focused on optimization of the 

developed system that utilizes the embedded multi-core system (Ma & Wang, 2016), memory 

management (Muck & Frohlich, 2011; Lei & Xiao-ya, 2011), hardware and system-level 

optimization (Dekkiche et al., 2016; Dedeoğlu et al., 2011; Singhal et al., 2012) and software 

optimization (Park et al., 2013; Joshi & Gurumurthy, 2014).  

Multi-processing and multi-threading are effective to greatly reduce the processing time 

of an application by running several tasks concurrently. Ma and Wang (2016) discussed on 

parallel computing framework on a multi-core system using single-threading, multi-threading 

and parallel computing using OpenMP. It can be concluded that the correct implementation of 

parallel computing can greatly improve the speedup of a program execution. Equally important, 

synchronization is very critical in any parallel processing task.  

Based on research by Park et al. (2013) and Joshi & Gurumurthy (2014), loop 

transformation techniques generally reduce the number of iterations and loop overhead that 

assist in increasing the execution time and code density of applications running on embedded 

ARM. Examples of loop transformations are loop termination, loop unrolling, loop reversal, 

loop unswitching, and loop fusion.  

GNU Compiler Collection (GCC) also provides several optimization flags that can be 

enabled during the compilation process (ARM, 2014).  General optimizations include (1) -O0 

for no optimization, (2) -O1 for common, basic optimization methods, (3) -O2 for additional 

optimization such as instruction scheduling, (4) -O3 for powerful optimization that helps to 

produce faster application but at the same time increases the program size and lastly (5) -Os 

that focused to decrease the size of program but may decrease the processing speed.  

Other optimization methods include kernel-level optimization (Dekkiche et al., 2016) 

and the use of GPU and DSP processor to support parallel computing of multimedia 

programming such as audio, image and video processing (Dedeoğlu et al., 2011; Singhal et al., 

2012) 

3.0 METHODOLOGY 

3.1 System Setup 

This subchapter will discuss the overview of the AVM system to be implemented and details 

of the embedded ARM platform used for testing. The application runs on two embedded boards 

of different specifications and a desktop for a performance comparison.  
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3.1.1 Vision-based AVM system   

This research work focused on optimizing a vision-based 1-input AVM system. The AVM 

system primarily involves image-stitching and motion estimation. Image stitching will create 

a continuous image of the surrounding vehicle based on input from one camera allocated at the 

front or rear of the vehicle. The area of the image to be stitch depends on the speed and angle 

of the vehicle.  

This system integrates the motion estimation technique based on block matching methods 

to determine the region of the image to be stitch. The algorithm will search every pixel or a 

block of the pixel from the current frame and compare it to a reference called template taken 

from the previous frame. From the block matching detection, the motion of the vehicle can be 

calculated.  

The AVM application mainly used the OpenCV library for image processing tasks. 

OpenCV is an open-source computer vision library that provides a large support for optimized 

image processing algorithm. OpenCV also provides NEON instruction support on some part 

of the library function. This greatly helps to optimize the execution of the image processing 

task on the ARM platform.  

The AVM application is developed using QT Creator Integrated Design Environment 

(IDE), running on Ubuntu 16.04 LTS. To run the AVM system on an embedded ARM platform, 

the source code will be cross-compiled using an SDK of the targeted platform. The cross-

compile step will create a compatible binary file to be run on the targeted board. During the 

compilation process, compiler optimization -O3 in enabled.  

3.1.2 Renesas R-Car H2 (ARM Cortex-A15)  

R-Car H2 is a development board introduced by Renesas Electronics Corporation that targeted 

a high-performance System on Chip (SoC) for the automotive industry (Renesas, n.d.). The 

board incorporates the ARM Cortex-A15 quad operating at 1.5 GHz based on 32-bit ARMv7 

CPU architecture. Each core supports Vector Floating Point v4 Extension (VFPv4) and NEON 

instruction set technology (Advanced SIMD instruction). NEON helps to improve multimedia 

operations such as audio and video processing and computer vision. The board also includes 

Imagination's PowerVR G6400 GPU operating at 550 MHz. The R-Car H2 development board 

runs of Linux based operating system. Figure 1 shows a demonstration of the AVM system 

running on the Renesas R-Car H2 development board.  

3.1.3 Telechip TCC 8971 (ARM Cortex-A7)  

TCC 8971 is an automotive-grade SoC with powerful multimedia support with low power 

consumption (Telechips, n.d.). TCC 8971 incorporates ARM Cortex A7-Quad (1.0 GHz) based 

on 32-bit ARMv7 CPU architecture. Each core supports NEON instruction set technology. It 

also includes 2D/3D Graphic support including MALI400 GPU MP2 and GC300 for 2D. The 

system runs on a Linux-based operating system. Figure 2 shows the AVM system running on 

the Telechip TCC8971 development board.  
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Figure 1: AVM system running on Renesas R-Car H2 

 

 

Figure 2: AVM system running on Telechip TCC8971 

3.1.4 Desktop Platform (Intel Core i7)  

The desktop platform incorporates 64-bit, Quad Intel Core i7 chip operating at 2.40 GHz. The 

platform runs Linux based operating system of Ubuntu 16.04.6 LTS. It also provides graphics 

engine support with Intel (R) HD Graphics 4600 and NVIDIA GeForce GT 750M. Figure 3 

shows the AVM system running on the desktop platform.  
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Figure 3: AVM system running on a desktop platform 

4.0 RESULTS AND DISCUSSION 

This subchapter will discuss the optimization methods applied and discussions on the results.  

4.1 Identifying Hotspot  

The first step in system optimization is to determine a program hotspot or section of code that 

takes a lot of processing time per frame. Important functions are timed using std::chrono 

library. For benchmarking purposes, the AVM application is set to run for 3 seconds on the 

desktop platform and 10 seconds on an embedded platform. The average processing time per 

frame is calculated and recorded.  

The AVM application is divided into several tasks to compute the timing. Figure 4 shows 

the average processing time of the AVM original source code. The processing time is timed 

per frame except for the GUI setup task that runs once at the program starts.   

From the result, we can see that the Telechip platform takes more processing time 

compared to other platforms. The initial frame per second (FPS) of the AVM application 

running on Desktop, Renesas, and Telechip is 15, 5 and 2 fps respectively.  

Referring to Figure 4, we can see that Motion Estimation and Process for Display takes 

a great processing time per frame compared to other functions. Thus, we will be focusing more 

on the optimization of the two functions.   
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Figure 4: Processing time of sub-functions in main process task 

4.2 Removing Redundancy  

Removing redundant code is an example of source code modification. We determine and 

modified any unnecessary steps or instructions in the code. It reduces lines of instructions in 

the source code, cycle count and even the number of memory access times.  

From the AVM original source code, we identified that a variable declaration of OpenCV 

cv::Mat type for the same variable has been initialized for every frame. This causes the same 

initialization instruction for the same variable to be executed at every frame. Accordingly, the 

part of the code is restructured to a global variable and called once at the function’s constructor 

code. The percentage of improvement for the Process for Display task running on several 

platforms is shown in Table 1. The percentage is calculated based on the initial processing time 

of the task.   

Table 1: Percentage of improvement by removing redundancy (Process for Display task) 

Platform  Improvement Percentage  

Desktop   83.76 %  

Renesas R-Car H2   67.18 %  

Telechip TCC 8971  68.90 %  

  

Desktop Renesas Telechip 

GUI setup 22.51 91.07 40.53 

Image PreProcessing 5.129 33.066 79.812 

Motion Estimation 12.389 91.002 179.978 

Image Stitching 0.41 2.678 2.399 

Process for Display 14.116 47.649 91.845 

Output Display 1.615 17.285 24.145 
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Next, variable declarations in the Motion Estimation function is reorganized. All possible 

variable declarations are moved into the class’ header file. The resulted processing time 

obtained for Motion Estimation function after the modification is tabulated in Table 2.  

Table 2: Percentage of improvement by removing redundancy (Motion Estimation function) 

Platform  Improvement Percentage  

Desktop   24.74 %  

Renesas R-Car H2   27.25 %  

Telechip TCC 8971  32.69 %  

Based on the result obtained, we can conclude that the repeated initialization of variables 

causes a great increase in the total execution time of the program running on an embedded 

platform. Any redundant code should be restructured to be outside of a function call or any 

flow control statements especially for or while loop. Generally, having a good structure of code 

helps to increase the processing speed of the program.  

Even though declaring a variable as global helps to prevent declaration and initialization 

at every frame, it also has some disadvantages. The global variable stays at a part of the stack 

for a global variable and stays in the memory for the whole execution of the program. On the 

other hand, local variables allocated and deallocated a memory space whenever the function is 

being used. Using a global variable may increase the program’s complexity as the variable 

stays alive as long as the program is still running. The global variable is also visible to other 

functions in the program. Any accidental changes by other functions may cause an error to the 

whole program.   

4.3 Multi-Threading  

Multi-threading is a promising technique to improve the processing speed of any algorithm. A 

single thread executes a single operation; thus multi-threading allows multiple operations or 

tasks to be executed concurrently. C++11 enables the programmer to easily code for 

multithreading using std::thread library from thread.h header file. 

The Motion Estimation function used a block matching based algorithm. High processing 

time is expected in the algorithm as it needs to search through every pixel block in the region 

of interest. To optimize the process, the searching region is divided into two smaller regions of 

interest. This will enable a searching task of one region to run on the main thread while another 

searching task of the second region to run on a new thread. As a result, the processing time of 

the Motion Estimation function reduces. The percentage of improvement concerning the initial 

execution time is calculated and tabulated as shown in Table 3.  

Table 3: Percentage of improvement by multi-threading method (Motion Estimation function) 

Platform  Improvement Percentage  

Desktop   40.78 %  

Renesas R-Car H2   40.56 %  

Telechip TCC 8971  44.83 %  
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Based on the result obtained, by executing the block matching algorithm in multithread, 

the percentage of processing time for Motion Estimation has improved on all the three 

platforms by almost half.  

4.4 Implementing Optimization on AVM System  

All the optimization techniques tested and discussed above focus on source code modification 

to improve the processing speed. We combined all the optimization methods discussed and 

applied the techniques in the AVM application. The total processing time per frame is 

computed and compared with the initial time. The percentage of improvement is calculated and 

tabulated in Table 4.  

Table 4: Percentage of total processing time improved (AVM application system) 

Platform  Improvement Percentage  

Desktop   48.91 %  

Renesas R-Car H2   45.21 %  

Telechip TCC 8971  47.30 %  

The final estimated FPS of the application after optimization are 39, 10 and 5 running on 

Desktop, Renesas and Telechip platform respectively. The processing time improved by half 

after applying the optimization method. Based on the result, the Renesas board seems to be 

doing better than the Telechip board. The difference might come from the different ARM 

Cortex-A core version which also has a different operating frequency. Renesas also have VFP 

architecture support available on the board. 

5.0 CONCLUSION AND FUTURE WORKS 

In conclusion, the execution time on the desktop platform is proved to be the best because of 

its powerful processing power. In comparison, even though the processing speed on ARM 

development board (Renesas and Telechip) has improved, we still far from having the system 

to work in real-time on an embedded platform. It is more challenging as the computer vision 

algorithm itself is computationally expensive. Thus, it is critical to have a good optimization 

technique that fully utilize the limited resources of the embedded platform.  

More research will be done to optimize the AVM application to be able to run at real-

time speed on an embedded platform. One of the recommendations is to code part of them in a 

low-level language (such as NEON) or directly accessing the kernel or memory. The 

implementation of the OpenCV library also can be restructured. The use of GPU using the 

CUDA and OpenCL framework can also be explored. 
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