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Abstract: This study compares the chemical composition
of cockle (Anadara granosa) and some commercially
important marine (Asian seabass Lates calcarifer,
grouper Epinephelus bleekeri, hardtail scad Megalaspis
cordyla, longtail tuna Thunnus tonggol and Indian
mackerel Rastrelliger kanagurta) and freshwater (sutchi
catfish Pangasius hypophthalmus, Nile tilapia
Oreochromis niloticus and eel Monopterus albus) fishes
in Peninsular Malaysia. The results show that the
proximate composition and trace metal content were
significantly different (P < 0.05) among species investi-
gated. The mean protein content was the highest in eel
(19.1%) and the lowest in sutchi catfish (13.0%) and
cockle (13.0%). The mean lipid content of Indian
mackerel (3.9%) was higher than cockle (2.0%), followed
by eel (1.3%) and longtail tuna (0.8%). The mean ash
content was the highest in Indian mackerel (1.4%) and
the lowest in cockle (0.9%). Zinc and manganese
contents in cockle (Zn: 61.2 mg kg−1, Mn: 22.7 mg kg−1)
were very high compared to other species investigated.
The copper content was minimum in sutchi catfish
(1.0 mg kg−1) and a maximum in the hardtail scad

(11.7 mg kg−1). Trace metal content in sutchi catfish,
Nile tilapia, grouper, longtail tuna, eel and cockle
followed an order Zn > Mn > Cu, whereas Asian seabass,
hardtail scad and Indian mackerel followed a different
order Zn > Cu > Mn. Trace metal content in the tissue of
the fishes examined was within safe limits for human
consumption except Mn content in the cockle and Cu
content in the hardtail scad, which is a matter of
concern. When considering the daily fish fat, mineral
and trace metal intake, marine fishes and shellfish are
better than freshwater fishes.
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1 Introduction

As a highly accessible food source, fishes are widely
consumed in Malaysia with a per capita consumption of
53 kg in 2002, which increased presently to nearly 59 kg
[1]. Fish protein provides essential amino acids, while
fish fat is rich in polyunsaturated fatty acids (PUFAs),
which have beneficial effects on many diseases such as
heart disease, diabetes, cancer and inflammatory disease
[2,3]. PUFAs are important for maintaining the integrity
of membrane of all living cells by producing prostaglan-
dins, which regulate many body processes such as
inflammation and blood clotting [4,5]. Some marine fish
proteins protect against the development of diet-induced
insulin resistance [5–7]. Regular consumption of fish can
promote protection against invasion of human patho-
gens by providing antimicrobial peptides [8]. Further-
more, eating fish during pregnancy may help to reduce
the risk of premature birth [2,9]. Apart from many health
benefits associated with the consumption of fish, it is
well accepted that they are an important component of
the regular diet.

In Malaysia, about 60–70% of total animal protein is
supplied by marine fisheries [10]. Among the wide
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variety of fishes in the region, Asian sea bass (Lates
calcarifer), Indian mackerel (Rastrelliger kanagurta),
longtail tuna (Thunnus tonggol), hardtail scad (Mega-
laspis cordyla), grouper (Epinephelus bleekeri), sutchi
catfish (Pangasius hypophthalmus) and Nile tilapia
(Oreochromis niloticus) are the most commonly con-
sumed fishes due to high consumer preference and
affordable market price. Apart from finfishes, many
Malaysians consume shellfishes, mainly cockles (Ana-
dara granosa). They prefer cockle because of its taste
and texture. Nowadays, a few Malaysians also consume
freshwater eel (Monopterus albus) because of its test and
soft texture.

Historically in Malaysia, consumer did not consider
nutritive value during selection of fish for consumption.
The selection of fish was normally based on the
availability, cost and taste. Nevertheless, selection of
fish for consumption is continuously changing as
awareness of nutritional value of fish is growing in
Malaysian society. Nowadays, many Malaysians ac-
knowledge the high nutritional value of fish proteins,
lipids and essential trace metal. Fishes accumulate trace
metals in their tissues from the aquatic environment
mainly through their diet and to a limited extent by
direct absorption from the water [11–13]. On consump-
tion of fish, these metals are transferred to the human
body [14]. Some of the trace metals play important roles
in biological systems of fish and humans, some being
essential to survival [15,16].

The common essential trace metals that are found in
fish are zinc (Zn), manganese (Mn) and copper (Cu)
[17–19]. Copper acts as a co-factor for enzymes involved
in glucose metabolism and the synthesis of hemoglobin,
connective tissue and phospholipids [20,21]. Zinc is an
integral part of a number of metalloenzymes and acts as
a catalyst for regulating the activity of specific zinc-
dependent enzymes. Manganese acts either as an
integral part of enzymes or as a co-factor for numerous
enzymes involved in nitrogen, lipid and carbohydrate
metabolism [20]. Trace metals can also have adverse and
toxic effects at high concentrations in the human body
[19,21]. It has been observed that higher than optimum
level of copper in human body can cause nausea,
vomiting, diarrhea, acute and chronic liver diseases,
liver cirrhosis and permanent organs damage [19].
However, awareness of essential trace metals in food is
also gradually growing in the Malaysian society. There-
fore, determination of the concentration of trace metals
in commercial fish is important to understand the
benefits and possible risk of fish consumption for human
health [22].

Published information indicates that nutritional
values of fish may differ depending on species [23–25].
There is also some information on the evaluation of
nutritional values of some fishes. However, comparison
of the nutritional value between commonly consumed
fish and shellfish by Malaysian is rarely addressed.
Therefore, the present study compares the nutritional
quality of commonly consumed fishes (Asian seabass
L. calcarifer, grouper E. bleekeri, hardtail scad
M. cordyla, longtail tuna T. tonggol, Indian mackerel
R. kanagurta, sutchi catfish P. hypophthalmus, Nile
tilapia O. niloticus and eel M. albus) and shellfish (cockle
Anadara granosa) by Malaysian. The objective of this
study is to compare the nutritional value (proximate
composition and zinc, manganese and copper content)
of cockles and commonly consumed fishes. In addition,
considering the fish consuming habits of Malaysian, the
daily intake of nutrients and trace metals of various diets
containing fish and shellfish is estimated and compared
using the annual 59 kg fish intake per person. This
information would be very useful for consumers to
conceptually increase their knowledge regarding the
nutritional content and consumption of important fishes.

2 Materials and methods

2.1 Sample collection and preparation

All marine fishes (Asian seabass, grouper, Hardtail scad,
Longtail tuna and Indian mackerel) were captured at the
east coast of Peninsular Malaysia within latitude 3.78109
to 3.78598 and longitude 103.34611 to 103.41482. The
freshwater fishes Nile tilapia and Sutchi catfish were
collected from a private fish farm in Kuala Berang,
Terengganu, Malaysia. Freshwater eel was collected
from a fish market in Kuantan, Malaysia. Table 1
presents the summary of fish and shellfish weights. A
total of three individuals were collected per species.
After collection, fishes were immediately placed in an
icebox and transported to the laboratory of Department
of Biomedical Science, International Islamic University
Malaysia (IIUM), Kuantan Campus. All fishes were
eviscerated, beheaded and filleted in the laboratory.
The cockle flesh was removed from its shell. The bones
of all fish fillets were separated from the flesh. All
samples were then cut into pieces and washed with tap
water several times to remove all blood. The samples
were packed in separate containers, labeled and stored
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in the freezer at −20°C until further laboratory analyses.
According to the IIUM (international Islamic University
Malaysia) research ethics, no ethical approval is needed
to kill fish for scientific purpose.

2.2 Proximate composition analysis

Moisture, ash and fat contents were analyzed at the
Natural Food Laboratory of Kulliyyah of Allied Health
Science, whereas the protein content was analyzed at the
Bioprocess Laboratory of Kulliyyah of Science,
International Islamic University Malaysia, Malaysia. The
moisture content was determined by drying flesh in an
oven at 70°C until a constant weight was obtained [26].
Crude protein contents were determined by the Kjeldahl
method through digestion by sulfuric acid (98%) at
420°C, distillation by sodium hydroxide (50% w/v) using
distillation unit (model: Kjeltec 2200, Foss Analytical,
Hoganas, Sweden) and titration by hydrochloric acid
(0.1 N) [26]. Lipid content was analyzed using the Soxhlet
extraction method using hexene as the solvent [26]. Ash
content of the sample was determined by ash in a muffle
furnace at 500°C for 22 hours by AOAC [26].

2.3 Mn, Cu and Zn content analysis

Trace metal content was analyzed at the Environmental
Laboratory of Kulliyyah of Science, International Islamic
University Malaysia, Malaysia. All samples were digested
before analyzing Zn, Mn and Cu content using atomic
absorption spectrometry (AAS) (model: SIMAA 6100
Perkin Elmer, USA). For digestion, a representative
sample of up to 0.3 g was extracted and dissolved in
6mL concentrated nitric acid (65%) (Merck, Germany)
and 1mL of hydrogen peroxide (Merck, Germany) for
45 min using a microwave heating unit (model:

multiwave 3000, Canada). The sample and acids were
placed in a quartz microwave vessel, which was sealed
and heated in the microwave unit. After cooling, the
vessel contents were filtered, centrifuged and allowed to
settle and then diluted to 15 mL in falcon tubes. The
tubes were sealed and kept under room temperature
before analysis using atomic absorption spectrometry.
All the digested samples were then analyzed three times
for Zn, Mn and Cu using the atomic absorption spectro-
metry. The presence of minerals was detected using
graphite furnaces atomic absorption spectrometry
(GFAAS).

Considering the fish consuming habits of Malaysian,
the daily intake of nutrients and trace metals of four
diets containing fish and shellfish are estimated and
compared using the annual 59 kg fish intake per person.
Diets include only marine fishes (diet 1: Asian sea bass,
grouper, hardtail scad, longtail tuna and Indian mack-
erel), marine fishes and shellfish (diet 2: Asian sea bass,
grouper, hardtail scad, longtail tuna, Indian mackerel
and cockle), only freshwater fishes (diet 3: sutchi catfish,
Nile tilapia and eel) and mixture of all marine and
freshwater fishes and shellfish (diet 4: Asian sea bass,
grouper, hardtail scad, longtail tuna, Indian mackerel,
sutchi catfish, Nile tilapia, eel and cockle).

2.4 Statistical Analysis

Proximate composition and trace metals data were
statistically analyzed using SPSS version 16.0. They were
checked for normality (by the Kolmogorov–Smirnov test)
and homogeneity of variance (by Levene’s test) before
analysis [27,28]. Only the percent data had to be arcsine
transformed before analysis. Nutrients contents of all
fishes, cockle and various diets were compared through
one-way analysis of variance (ANOVA). If an ANOVA was
significant, differences between the means were analyzed
by the Tukey test for unplanned multiple comparisons of
means (P < 0.05).

3 Results and discussion

3.1 Proximate composition of fish

Information about proximate composition and trace
metal content of commercially important fishes is very

Table 1: Weight of fish and shellfish investigated

Species Range (g) Mean ± standard deviation

Asian seabass 387.2–434.6 405.6 ± 25.4
Grouper 320.5–427.5 389.9 ± 60.1
Hardtail scad 264.4–283.4 270.9 ± 9.2
Longtail tuna 356.7–411.7 381.7 ± 27.8
Indian mackerel 130.2–144.3 135.6 ± 7.6
Sutchi catfish 426.3–498.8 453.1 ± 39.8
Nile tilapia 224.4–2.53.1 229.9 ± 7.8
Eel 121.3–174.3 154.1 ± 28.6
Cockle 9.8–13.4 11.1 ± 2.0
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useful for nutritionists to aid them in dietary formula-
tions, nutrient labeling, processing, and dietary
product development. We determined proximate com-
positions and zinc, manganese and copper contents of
some economically important fishes. Proximate com-
position and trace metals content were significantly
different among fish species (Table 2). Several authors
[29–32] reported similar significantly different prox-
imate compositions and trace metal contents in
different fishes.

Moisture content was significantly different (P <
0.05) among species (Table 2 and Figure 1a). The highest
moisture was observed in cockle (87%), while the lowest
was observed in hardtail scad (75%). There was no
significant difference in the moisture content of sutchi
catfish, Nile tilapia, Asian sea bass, grouper and eel (P >
0.05). Similarly, the moisture contents of Asian seabass,
hardtail scad, longtail tuna and Indian mackerel were
similar with no significant differences noted (P > 0.05).
The moisture content of hardtail scad and Indian
mackerel in the present study concurs with Nurnadia
et al. [33], who reported the moisture content of 77.7%
for hardtail scad and of 76.6% for Indian mackerel.
Ravichandran et al. [25] observed the moisture content of
77.9% for Nile tilapia that agrees well with the present
study.

Mean protein content was the highest in eel and the
lowest in cockle (Figure 1b). Mean protein content of
Indian mackerel was higher than that of sutchi catfish,
Nile tilapia, grouper, hardtail scad, longtail tuna and
cockle. Protein contents of Asian sea bass and Indian
mackerel were not statistically different (P > 0.05). Asian
sea bass had higher protein content than sutchi catfish,
hardtail scad, longtail tuna and cockle. Protein contents
of Asian sea bass, Nile tilapia and grouper were also
statistically similar (P > 0.05). There is no previous study

to compare directly with the protein content of fishes
observed in the present study except hardtail scad,
Indian mackerel, eel and cockle. The observed protein
content of cockle and Indian mackerel concurs with
Nurnadia et al. [33], who observed the protein content of
16.0% and 20.5% for cockle and Indian mackerel,
respectively. The observed protein content of eel is in
agreement with Rahman et al. [30]. However, the protein
content of hardtail scad in the present study is lower
than that of the protein content of hardtail scad (20.9%)
observed by Nurnadia et al. [33]. The inconsistency
between two studies could be potentially explained by
differences in factors such as fish size, capture season,
capture location and fertility cycle.

The mean lipid content in the fish flesh ranged from
0.2 to 3.9% (Figure 1c). The mean lipid content of Indian
mackerel was higher than cockle, followed by eel and
longtail scad. Longtail scad had higher lipid content
than sutchi catfish, Nile tilapia, Asian sea bass, grouper
and hardtail scad. The lipid content of cockle in the
present study concurs with Nurnadia et al. [33], who
observed similar lipid content in cockle (1.9%). In
another study, Rahman et al. [30] recorded 2.0% as a
mean lipid content of cockles collected from the east
coast of peninsular of Malaysia. The lipid content of
Indian mackerel and hardtail scad in the present study is
higher and lower, respectively, than that studied by
Nurnadia et al. [33]. However, the observed lipid content
of Indian mackerel concurs with Rahman et al. [30]. The
lipid content of Nile tilapia in the present study is similar
with Ravichandran et al. [25], who reported the lipid
content of 0.45% for Nile tilapia. However, the fat
content among various species may be influenced by
multiple factors, such as composition of food, geogra-
phical location, age, stage of sexual maturity and catch
season [34].

Based on the lipid content, all fish examined in the
present study can be classified as lean fish (the fish lipid
content lower than 2%) except Indian mackerel [36].
This result indicates that Indian mackerel is better than
other fishes (Asian sea bass, longtail tuna, hardtail scad,
grouper, sutchi catfish, Nile tilapia and eel) and shellfish
(cockle) as it is an excellent source of fish fat and
polyunsaturated fatty acids particularly eicosapentae-
noic acid (EPA) and docosahexaenoic acid (DHA)
[35,36]. However, this article does not report the
composition fatty acids in fish and shellfish.

The ash content of fish is referred to as the total
mineral content of fish. In this study, the mean mineral
content was the highest in Indian mackerel (1.4%) and
the lowest in cockle (0.9%) (Figure 1d). There is no

Table 2: The ANOVA results (one-way ANOVA) of proximate and
mineral composition.

Variable DF (degree of
freedom)

F-ratio Significance (p value)

Moisture 8, 18 36.66 *

Ash 8, 18 10.25 *

Protein 8, 18 16.94 *

Lipid 8, 18 309.92 *

Zn 8, 18 56.61 *

Mn 8, 18 257.93 *

Cu 8, 18 62.24 *

*P < 0.001
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significant difference among the mineral contents of
Indian mackerel, Hardtail scad, grouper, Nile tilapia and
sutchi catfish (P > 0.05). Similarly, the mineral contents
of sutchi catfish, Nile tilapia, Asian sea bass, longtail
tuna, eel and cockle were statistically same (P > 0.05).
Mineral contents of Indian mackerel and hardtail scad
were significantly higher than the mineral contents of
Asian sea bass, longtail tuna, eel and cockle (P < 0.05).
The values of the mineral content of hardtail scad and
Indian mackerel in the present study agree with

Nurnadia et al. [33], who observed mineral content of
1.1% and 1.3% in hardtail scad and Indian mackerel,
respectively. In the case of cockle’s mineral content, our
observed value is similar to the value observed by
Rahman et al. [30] but lower than the value recorded by
Nurnadia et al. [33]. However, the mineral contents of
fish and shellfish vary depending on a variety of factors,
including species, diet, and environmental variables
particularly salinity, temperature, season, and geo-
graphical location.

Figure 1: Mean (±standard error) moisture (a), protein (b), lipid (c) and mineral (d) contents of different fishes. Bars with no letter in
common are significantly different (P < 0.05) based on the Tukey test.
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Considering the fish consuming habits of Malaysian,
daily intake of nutrients and trace metals of four
different fish diets are estimated and compared using
the annual 59 kg fish intake per person (Figures 2 and 3).
The estimated daily fish protein intake (24.7 g day−1) is
significantly higher by consuming diet 3 (freshwater fish
only: sutchi catfish, Nile tilapia and eel) compared to
consuming other diets (diet 1: 23.6 g day−1, diet 2:
23.2 g day−1 and diet 4: 23.7 g day−1) (Figure 2a), whereas
an opposite result is observed in the case of the daily fish
fat intake (Figure 2b). When considering daily mineral
intake, all diets are almost similar (Figure 2c). However,
the estimated daily protein intake by consuming diet 3 is
closer to the recommended protein intake for Malaysian
[37]. According to the National Coordinating Committee
on Food and Nutrition Ministry of Health Malaysia [37],
the recommended Malaysian’s daily protein intake is
12–62 g per person depending on age and gender. This

result indicates that consuming diet 3 (freshwater fish) is
better than consuming other diets (diet 1, diet 2 and diet 4)
in the case of daily mean protein intake.

3.2 Trace metal contents of fish

Zn, Mn and Cu contents in the cockle and fishes
investigated are presented in Figure 4. The mean Zn
content in fish flesh varied from 21 to 97 mg kg−1. The Zn
content in all fish fleshes were lower than the maximum
Zn level permitted for fish (150mg kg−1) by FAO/WHO
[38]. The recommended dietary allowance (RDA) for zinc
in human is 15 mg day−1 for men, 12 mg day−1 for women,
10 mg day−1 for children and 5mg day−1 for infants [39].
Harmful health effects generally begin at levels from 10
to 15 times of the RDA. In the present study, the greatest

Figure 2: Mean (± standard error) protein (a), lipid (b) and mineral
(c) intake (g day−1) of various diets consisted of various fishes. Diet
1: only marine fishes (Asian sea bass, grouper, hardtail scad,
longtail tuna and Indian mackerel), diet 2: marine fishes and
shellfish (Asian sea bass, grouper, hardtail scad, longtail tuna,
Indian mackerel and cockle), diet 3: only freshwater fishes (sutchi
catfish, Nile tilapia and eel) and diet 4: mixture of all marine and
freshwater fishes and shell fish (Asian sea bass, grouper, hardtail
scad, longtail tuna, Indian mackerel, sutchi catfish, Nile tilapia, eel
and cockle). Bars (n = 3) with no letter in common are significantly
different (P < 0.05) based on the Tukey test.

Figure 3: Mean (± standard error) zinc (a), manganese (b) and
copper (c) intake (mg day−1) of various diets consisted of various
fishes. Diet 1: only marine fishes (Asian sea bass, grouper, hardtail
scad, longtail tuna and Indian mackerel), diet 2: marine fishes and
shellfish (Asian sea bass, grouper, hardtail scad, longtail tuna,
Indian mackerel and cockle), diet 3: only freshwater fishes (sutchi
catfish, Nile tilapia and eel) and diet 4: mixture of all marine and
freshwater fishes and shell fish (Asian sea bass, grouper, hardtail
scad, longtail tuna, Indian mackerel, sutchi catfish, Nile tilapia, eel
and cockle). Bars (n = 3) with no letter in common are significantly
different (P < 0.05) based on the Tukey test.
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Zn concentration was observed in cockle. The Zn
contents of Eel and Indian mackerel were significantly
higher than sutchi catfish, Nile tilapia, Asian sea bass,
grouper, hardtail scad and longtail tuna (P < 0.05)
(Figure 4a). The Zinc contents of Eel and Indian
mackerel were statistically similar (P > 0.05). Similarly,
the Zn contents of sutchi catfish, Nile tilapia, Asian sea
bass, grouper, hardtail scad and longtail tuna were
statistically similar (P > 0.05). However, the Zn content
obtained for Asian seabass, Indian mackerel, longtail
tuna, hardtail scad, Nile tilapia and eel agree well with
the reported Zn content, which are presented in Table 3.
Zinc concentration in cockle was very high compared to
other investigated species. Zinc concentration in cockle
is to be expected as mentioned by CeliK and Oehlens-
chlager [40], who stated that the molluscs generally
contain very high concentration of Zn. According to the
study by Boscolo et al. [41], bivalve mollusc has a high
capacity and propensity to concentrate trace metals.

Greatest Mn content was also observed in cockle
(22.7 mg kg−1), while the lowest was observed in hardtail
scad (1.7 mg kg−1) (Figure 4b). The permissible limits for
Mn set by WHO [38] is 1 mg kg−1. Permissible limits for
Mn in many countries are much higher than the WHO
limit. For example, the permissible limit for Mn in
Nigeria is 5 mg kg−1 [50]. However, Mn concentrations for
the various fish species investigated are higher than the
permissible limits set by FAO but lower than the
permissible limits set by FEPA except cockle [50]. United
States National Research Council recommends safe and
adequate daily intake levels for Mn that range from 0.3
to 1 mg day−1 for children up to 1 year, 1–2 mg day−1 for
children up to age 10 years and 2–5 mg day−1 for children
aged 10 years and older [51]. The Mn content in eel was
higher than that in hardtail scad (P < 0.05). The Mn
contents of sutchi catfish, Nile tilapia, Asian sea bass,
grouper, longtail tuna, Indian mackerel and eel were
statistically similar (P > 0.05). Similarly, the Mn contents

Figure 4: Mean (± standard error) zinc (a), manganese (b) and copper (c) contents of different fishes. Bars with no letter in common are
significantly different (P < 0.05) based on the Tukey test.
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of sutchi catfish, Nile tilapia, Asian sea bass, grouper,
hardtail scad, longtail tuna and Indian mackerel were
statistically similar (P > 0.05). The manganese content of
longtail tuna in the present study concurs with Yousuf
[47], who reported the Mn content of 0.1–12.6 mg kg−1 for
longtail tuna. The Mn content in Nile tilapia observed in
the present study was lower than the reported Mn
content for Nile tilapia (Table 3).

The copper content in the fish flesh ranged from 0.97
to 11.87 mg kg−1, with a minimum observed for the sutchi
catfish and a maximum for the hardtail scad (Figure 4c).
Copper concentrations in all species were lower than the
FAO/WHO limit (10mg kg−1) except hardtail scad [38].
The safe and adequate daily intake of Cu is 1.5–3 mg for
adults, 1.5–2.5 mg for children aged 11 years and older,
1–2 mg for children between 7 and 10 years, 1–1.5 mg for
children between 4 and 6 years, 0.7–1 mg for children
between 1 and 3 years and 0.4–0.7 mg for infants [52].
The Cu content of Indian mackerel was higher than that
of sutchi catfish, Nile tilapia, Asian sea bass, grouper,
longtail tuna, eel and cockle (P < 0.05). The copper
contents of Nile tilapia, Asian sea bass, grouper, longtail
tuna, eel and cockle were statistically similar (P > 0.05).
Similarly, the Cu contents of sutchi catfish, Nile tilapia,
Asian sea bass, grouper, longtail tuna and eel were
statistically similar (P > 0.05). The Cu content observed
in this study for Asian seabass and Nile tilapia agrees
with the reported copper content (Table 3). However, the
Cu contents in Indian mackerel and hardtail scad were
higher than the reported value (Table 3).

The metal content in Sutchi catfish, Nile tilapia,
grouper, longtail tuna, eel and cockle followed an order
Zn > Mn > Cu, whereas Asian seabass, hardtail scad and
Indian mackerel followed a different order Zn > Cu > Mn.
Metabolic requirements for specific trace metals in the
individual species, differences in diet preferences and area
of capture may account for these differences [18,53,54].
According to Jenne and Luoma [55], the bioavailability of
trace metals is influenced by the physiological and
ecological properties of organisms, the form of dissolved
trace elements, the chemical and physical properties of
water and trace metal speciation in sediments.

The observed differences of trace metals content
between the present study and previous studies can be
explained by the fact that the concentrations of these
metals depend to a great extent on age, sex, biological
cycle, season, nutrient availability, temperature and
salinity of the water may contribute to variations in the
trace metal concentrations in fishes [56]. Trace metals and
nutrients enter into the aquatic environment by many
ways. However, after entering the aquatic ecosystem,
the majority of nutrients and trace metals bound to the
sediments [57,58]. Therefore, trace metal content in the
aquatic sediment is normally very high [59,60]. They
are released into surface waters through the upwelling of
nutrient-rich waters. Trace metals are bio-accumulated in
the lower portion of the food chain and transferred
gradually to the higher portion of the food chain [18].
Such a pathway was implied to explain the elevated trace
metals contents in fish from Mauretania and India [18,61].

Table 3: Reported Zn, Mn and Cu content (mg kg−1) in various fishes

Species Zn Mn Cu Ref.

Asian seabass (Lates calcarifer) 84.3 — 2.7 [18]
Indian mackerel (Rastrelliger kanagurta) 37.4 — 2.8 [18]
Indian mackerel (Rastrelliger kanagurta) 54.1 3.1 5.6 [30]
Japanese threadfin bream (Nemipterus japonicus) 73.4 — 2.7 [18]
Malabar tonguesole (Cyanoglossus macrostomus) 38.1 — 2.8 [18]
Bluefin jack (Caranx melampygus) 76.0 — 3.6 [18]
Nile tilapia (Oreochromis niloticus) 17.4 15.2 2.2 [42]
Nile tilapia (Oreochromis niloticus) 78.7 8.9 15.5 [43]
Nile tilapia (Oreochromis niloticus) 20.3–33.1* — 1.7–3.1* [44]
Nile tilapia (Oreochromis niloticus) 29–45 — 2.3–5.5 [45]
Common carp (Cyprinus carpio) 30.3 — 2.5 [46]
Longtail tuna (Thunnus tonggol) 0.4–17.5 0.1–12.6 8.3–10.3 [47]
Hardtail scad (Megalaspis cordyla) 17.5 — 3.5 [48]
Eel (Monopterus albus) 59.3 — 0.8 [49]
Eel (Monopterus albus) 61.2 4.2 1.6 [30]
Cockle (Anadara granosa) 96.2 22.7 3.3 [30]

*Dry weight basis
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Based on the observed trace metal intake in various
fish and shellfish, the estimated average daily Zn and Mn
intake is significantly higher by consuming diet 2 (Zn:
6.9 mg day−1, Mn: 0.9mg day−1) compared to other diets
(Figure 3a and b). When considering daily average Cu
intake per person, diet 1 (0.7 mg day−1) and diet 2
(0.7 mg day−1) are almost same and both are higher
than diet 3 (0.2 mg day−1) and diet 4 (0.5 mg day−1).
However, the estimated daily Zn, Mn and Cu intake by
consuming diet 2 is almost similar to the recommended
Zn, Mn and Cu intake for Malaysian by National
Coordinating Committee on Food and Nutrition Ministry
of Health Malaysia [30], who recommended daily Zn, Mn
and Cu intake 4–9.9, 1.2–2.3 and 0.3–0.9 mg day−1,
respectively, depending on age and gender. This result
indicates that diet 2 (marine fishes and shellfish: Asian
sea bass, grouper, hardtail scad, longtail tuna, Indian
mackerel and cockle) is better than consuming other
diets (diet 1, diet 3 and diet 4) in the case of daily
average Zn, Mn and Cu intake.

4 Conclusion

From the results of this study, the tissue Zn, Mn, Cu
contents of the fishes were within safe limits for human
consumption. However, Mn enrichment in the cockle
and Cu enrichment in the hardtail scad collected from
the east coast of peninsular Malaysian is a matter of
concern. This study provides essential baseline data with
which future studies can be compared and evaluated.
The data provided in this study will contribute substan-
tially to the knowledge about the proximate composition
and the contents of the essential trace element Zn, Mn
and Cu in the edible part of a considerable number of
important fish species. Consuming freshwater fishes is
slightly better than consuming marine fishes in the case
of daily protein intake. When considering the intake of
daily fish fat, mineral and trace metals (Zn, Mn and Cu),
consuming marine fishes and shellfish is better than
consuming freshwater fishes. This article will remove the
existing knowledge gaps of the consumer, nutritionist
and the interested scientific community.
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