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Abstract: The pellet morphology and diameter range (DR) of Ganoderma lucidum were observed in a 

repeated-batch fermentation (RBF) for the trio total production of biomass, exopolysaccharide (EPS) and 

endopolysaccharide (ENS). Two factors were involved in RBF; broth replacement ratio (BRR: 60%, 75% 

and 90%) and broth replacement time point (BRTP: log, transition and stationary phase) in days. In 

RBF, 34.31 g/L of biomass favoured small-compact pellets with DR of 20.67 μm< d < 24.00 μm (75% 

BRR, day 11 of BRTP). EPS production of 4.34 g/L was prone to ovoid-starburst pellets with DR 

of 34.33 μm< d <35.67 μm (75% BRR, day 13 of BRTP). Meanwhile, the highest 2.43 g/L of ENS 

production favoured large-hollow pellets with DR of 34.00 μm< d < 38.67 μm (90% BRR, day 13 of 

BRTP). In addition, RBF successfully shortened the biomass-EPS–ENS fermentation period (31, 33 

and 35 days) from batch to 5 days, in seven consecutive cycles of RBF. In a FTIR detection, β-
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glucan (BG) from EPS and ENS extracts were associated with β-glycosidic linkages (2925 cm
-1

, 

1635 cm
-1

, 1077 cm
-1

,920 cm
-1

 and 800 cm
-1

 wavelengths) with similar 
1
H NMR spectral behaviour (4.58, 

3.87 and 3.81). Meanwhile, 4 mg/L of BG gave negative cytotoxic effects on normal gingival cell 

line (hGF) but induced antiproliferation (IC50 = 0.23 mg/mL) against cancerous oral Asian 

cellosaurus cell line (ORL-48). Together, this study proved that G. lucidum mycelial pellets could 

withstand seven cycles of long fermentation condition and possessed anti-oral cancer beta-glucan, 

which suits large-scale natural drug fermentation. 

Keyword: Ganoderma lucidum; pellet morphology; repeated-batch fermentation; exopolysaccharide; 

endopolysaccharide; anti-oral cancer 

 

Abbreviation: EPS: Exopolysaccharide; ENS: Endopolysaccharide; GL: Ganoderma lucidum; g: 

Grams; L: Litre; mL: Millilitre; v/v: Volume per volume; PDA: Potato dextrose agar; RBF: Repeated 

batch fermentation; RPM: Revolutions per minute; μm: Micrometres; SSF: Solid state fermentation; 

SLF: Submerged liquid fermentation; BRTP: Broth replacement time point; BRR: Broth replacement 

ratio 

1. Introduction 

Fermentation strategies have been unchanged for decades [1]. The conventional way to study 

mushrooms was through solid-state fermentation (SSF) until submerged liquid fermentation (SLF) 

was improved [2]. SLF caught researchers’ attention due to its high yield of biomass and 

polysaccharide production in a shorter time period and with lower costs compared to SSF [3]. There 

are many ways to perform SLF, but the most promising production of a bioactivity compound from 

mushroom has been seen in repeated-batch fermentation (RBF) [4]. RBF is an adjustment of batch 

fermentation, in which a specific amount of medium is extracted and replaced by the same amount of 

medium extracted with a new medium, either intermittently, or more than once without changing the 

culture.  

Predominantly, RBF is performed using bacteria, however, a study conducted by Wan-Mohtar 

et al., 2016 [5] has shown that RBF can also be used for basidiomycetes fungus, especially for 

Ganoderma lucidum (GL). GL is one of the broadly utilized species in biochemical and 

pharmaceutical fields [6], to produce ganoderic acid and polysaccharide for medicinal purposes. GL 

was also considered as a ‘remedy that could resuscitate the dead’ [7], and has been utilized for the 

prevention and treatment of numerous sorts of maladies; it is accepted to have anti-cancer and anti-

ageing properties and is hostile to microbial or viral capacities [8,9]. 

Extensive studies have been conducted on GL for its production of polysaccharides, due to its 

high medicinal properties. A further study conducted by Wan-Mohtar et al., 2016 [10] proved that 

the production of polysaccharide is directly affected by the morphology of mycelial pellets. Small-

loosely branched mycelium pellets produce higher polysaccharide compared to large mycelium 

pellets [4]. In this study, the ideal pellet diameters of GL strain QRS 5120 were reported for the 

highest total biomass, exopolysaccharide and endopolysaccharide productions, as well as its anti-oral 

β-glucan (BG) bioactive properties.  
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Reports have been made regarding the cytotoxic effects of GL in vivo and in vitro where the GL 

extracts have demonstrated the effect in various lines of cancer cells, including the breast, pancreas, 

lung, colon and prostate [11]. To the best of our knowledge, only limited studies have demonstrated 

preliminary evidence of GL extract having a cytotoxic effect and inhibition activity toward oral cancer 

cells [12]. Hence, in this work, β-glucan (BG) from GL was screened on normal oral cell lines (gingival 

cell line; hGF) as well as a malignant oral cancer (cancerous oral Asian cellosaurus cell line; ORL-48) 

from an infected Malaysian patient, via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT) colourimetric assay. MTT cytotoxicity assay is widely used to test inhibitor 

sensitivity to cultured cells, as it is an economical and rapid test that does not require animal model 

use. 

2. Material and methods 

2.1. Mushroom mycelium and media composition 

The mushroom mycelium of Malaysian Ganoderma lucidum strain QRS 5120 was obtained 

from Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, 

Faculty of Science, Universiti Malaya as identified by Supramani et al., (2019b). The media 

composition was 39 g/L of potato dextrose agar (PDA, Sigma-Aldrich, Dorset, UK) powder for the plate 

subculture and seed culture, and the fermentation media were g/L glucose 30.0, yeast 1.0, KH2PO4 0.5, 

K2HPO4 0.5, MgSO4 0.5 and NH4CL 4.0. All these steps were done at a temperature of 30 ℃. 

2.2. Fermentation in shake flask 

The method used for inoculum preparation involving two-seed culture stages which both stages 

cultivated at 30 ℃ with an initial pH of 4 and 100 rpm for ten days and 11 days, respectively. For the first 

seed culture, three mycelial agar square had been cut from the PDA plate at day ten and were inoculated 

into 100 mL medium (30 mL glucose, 50 mL mixed media, and 20 mL distilled water) in 250 mL 

Erlenmeyer flask. For the second seed culture, 20% (v/v) of the mycelium from the first seed culture 

had been taken after being homogenized using the blender for 10 seconds to produce additional growing 

hyphae tips. This then being transferred into a new medium in 250 mL Erlenmeyer flask with 100 mL of 

the total working volume and the cultivation being carried out with pH 4, 100 rpm at 30 ℃ (Incubation 

Shaker, Multitron Pro, INFORS HT, Switzerland) before proceeding for repeated-batch fermentation. 

2.3. Repeated-batch fermentation (RBF) 

Two main factors are involved in RBF, namely, broth replacement ratio (BRR) and broth 

replacement time point (BRTP). The selected BRR for this study was 60%, 75% and 90%, and BRTP 

varied for each different response. BRTP for the biomass was day 7, 9 and 11, exopolysaccharide (EPS) 

were day 9, 11 and 13 and endopolysaccharide (ENS) were day 11, 13 and 15. To perform RBF, a 

certain amount of medium, following the BRR stated above, was taken out from each shake flask 

by pouring it into the measuring cylinder and replaced with an exact amount of medium at the 

specific BRTP. BRTP was performed by following the growth curve and production rate, as 
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shown in Figure 1 [13]. Previous work by Supramani et al., 2019b [14] had optimized pH, glucose 

concentration and agitation speed for production of biomass, EPS and ENS.   

2.4. Analytical methods 

2.4.1 Mycelium biomass 

A sample from each shake flask was extracted by following the respective BRR. To maintain 

homogeneity, the medium was swirled before sampling. The sample was filtered using a Buchner 

funnel filter paper 0.45 µm (Whatman, Sigma–Aldrich, Dorset, UK) and the mycelial biomass was 

washed (3x) using sterile distilled water. Then, the mycelial biomass on the filter was subjected to 

food dehydrator (35 ℃) until constant weight. By subtracting the weight of pre-dried filter paper 

from the weight of filter paper with mycelial biomass, the mycelial biomass was calculated. The 

concentration (g/L) was obtained by multiplying the mycelial biomass to dilution factor. 

2.4.2 Exopolysaccharide (EPS) 

The filtered mycelial culture from Section 2.4.1 was transferred to a 15-mL centrifuge tube and 

the mixture was centrifuged at 10,000 rpm for 15 minutes. Resulting precipitate was discarded and 

the remaining supernatant was harvested for crude EPS precipitation (4). A 95% cold ethanol shock-

treatment at 5 ℃ was added at 1:4 ratios and stored overnight at 4 ℃. The precipitated EPS was re-

centrifuge twice at 15,000 rpm for 20 minutes, filtered using pre-dried and weighed GF/C filter paper 

(Whatman Ltd., Kent, UK). EPS-filter paper combination was dried in a food dehydrator until a 

constant weight was observed for EPS calculation in g/L (14). 

2.4.3 Endopolysaccharide (ENS) 

ENS from the G. lucidum strain QRS 5120 was extracted from the dried mycelium (biomass 

from Section 2.4.1). Dried mycelium (DM) was mixed with distilled water (1:10 g/mL) after the 

mycelial biomass concentration was calculated. Then, the distilled water containing the DM was 

subjected to hot water extraction method and sterilized at 121 ℃ for 30 minutes [15]. DM solution 

was filtered, and the supernatant was used for the extraction of ENS. Four volumes of 95% (v/v) 

ethanol was added to one volume of the supernatant from the DM solution and left overnight at 4 ℃ 

to precipitate the ENS. Subsequently, the precipitate was filtered through pre-dried and weighted 

filter paper and reassigned to the food dehydrator until the constant weight obtained. 

2.4.4 Kinetics calculation 

The G. lucidum repeated-batch fermentation kinetic parameters were calculated as follows [16]; 

X max = maximum cell concentration achieved at stationary phase  

X o = initial cell concentration at inoculation 

                           Biomass productivity  (g/L day 
-1

) = 
      –    

                               
                      (1) 
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                                     Yield (biomass) = 
      –    

                
                                                            (2) 

                 EPS productivity (g/L day 
-1

) = 
        –      

                               
                                        (3) 

                                                            Yield (EPS) = 

        –      

                
                                      (4) 

                                         ENS productivity (g/L day 
-1

) = 
        –      

                               
               (5) 

                                                       Yield (ENS) = 

        –      

                
                                           (6) 

2.4.5 Residual glucose determination 

The DNS method was used to estimate the residual glucose concentration based on the standard 

glucose calibration plot [17]. The filtered media was centrifuged at 10000 rpm for 10 minutes, and 3 mL 

of supernatant was transferred into a test tube using the pipette. Add 3 mL of DNS reagent to the sample 

and mixed properly. The test tubes were placed in a boiling water bath for 15 minutes. Then, 1 mL of 

Rochelle salt solution was added to stabilize the red brick colour formed. This is followed by cooling 

at room temperature using tap water. The absorbance of samples was measured at 575 nm using the 

UV-Vis spectrophotometer (Model 10S GENESYS™ UV-Vis, Thermo Scientific™). 

2.5. Image analysis 

An inverted microscope LEICA (Model DFC295, Leica Microsystems (SEA) Pte Ltd, 12 Teban 

Gardens Crescent, Singapore) with a coupled camera (JVC, TK-C1381 Colour Video Camera, 

Friedberg, Germany) was used to evaluate the morphological details of the randomly collected 

pellets. About 20 mL of the sample was taken from each flask and transferred into a petri dish. From 

each sample, three pellets were selected at random and put onto the slide to be observed under the 

inverted microscope for further morphological perception and analysis. The pellet diameters 

(horizontal and vertical) were measured using a microscopic objective stage micrometre calibration 

slide (10 mm/100 0.1 mm C7), at 2X magnification. 

2.6. Characterization of β-glucan using Fourier transform infrared spectroscopy (FTIR) 

FTIR analysis was performed using Agilent Cary 630 equipped with diamond ATR (attenuated 

total reflectance). A BG sample (0.5 g) was placed on a clean window, and the pressure clamp was 

closed until a click was heard. Then, the data was collected using MicroLab software (Agilent, 

Santra Clara, CA, USA). 

2.7. Proton nuclear magnetic resonance (
1
H-NMR) 

The NMR analysis was performed using 600 Mhz (Agilent, Santra Clara, CA, USA). BG (10 

mg) was mixed with 500 µL of deuterium oxide (D2O). Upon dissolving, the mixture was 

centrifuged at 10,000 x g for 10 min. The clear supernatant was transferred to a 5 mm NMR tube 
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(Norell, Sigma–Aldrich, Gillingham, Dorset, UK). The comparison standard used for 
1
H-NMR 

was laminarin (Laminaria digitata; Sigma–Aldrich, Gillingham, Dorset, UK). The experiment 

was conducted at 25 ℃. A pre-saturation pulse sequence (PRESAT) experiment was performed to 

remove the large-signal for the HOD to determine 
1
H-NMR spectra. 

2.8. MTT colourimetric assay 

Using freshly prepared complete medium grown in a cell culture incubator (5% CO2, gaseous 

composition 95% air, 37 ℃), two cell lines were used which were normal gingival cell line (hGF) 

and a cancerous Asian cellosaurus cell line (ORL-48). Initially, 96-well microtiter plates were seeded 

with hGF and ORL-48 at 2 × 104 cells/mL or each well. Both cells were permitted to cultivate 24 hours 

beforehand and then treated with BG at different concentrations ranging from 0 mg/mL (Control) to 4 

mg/mL for the following 72 hours. The spent media was removed, and 50 µL of serum-free media 

and 50 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) solution were added 

into each well and then, the plate was then incubated at 37 ℃. After incubation for 3 hours, 150 µL of 

MTT solvent was added into each well. The plate was wrapped in foil and mixed on an orbital shaker 

for 15 minutes. The absorbance was read at 590 nm wavelength within 1 hour. Cytotoxicity of the 

MTT assay was observed as IC50 value half-maximal inhibitory concentration. 

3 Results and discussions 

3.1. Determination of broth replacement time point and broth replacement ratio 

The batch fermentation growth curves for biomass, EPS and ENS production of G. lucidum 

strain QRS 5120 were performed for up to 15 days to generate each suitable broth replacement time 

point (BRTP), categorized as the end of log phase, transition phase and early stationary phase. In 

Figure 1, the BRTP was chosen at the transition phase, which was the highest peak of each 

bioproduct formation, according to Wan-Mohtar et al., 2016 [5] BRTP for biomass production 

reached the end of the log phase at day 7, followed by day 9 of the transition phase, and slowed 

down into early stationary phase at day 11. Meanwhile, BRTP for EPS production reached the end of 

the log phase at day 9, followed by day 11 of the transition phase, and slowed down into early 

stationary phase at day 13. This is similar with the study reported by Diamantopoulou et al., (2012) 

where the maximum quantity of EPS were detected in the earlier growth phases or in the early stationary 

phase (8th–12th day after inoculation) and this quantity seems to be reduced thereafter  [18,19]. 

The slight delay occurred for BRTP of ENS production as it reached the end of the log phase at 

day 11. Taken together, BRTP of G. lucidum batch fermentation showed biomass (day 7, 9 and 11), 

EPS (day 9, 11 and 13) and ENS (day 11, 13 and 15), respectively. According to Athenaki et al., (2018), 

the lower value of ENS shown at early growth phase and relatively elevated at the late growth phase 

which the reduction of ENS was accompanied by a gradual increase in total cellular lipids and the 

elevation of ENS value means that the lipid values  drastically decreased at the late growth phases [20]. 

The same study suggested that there was relationship between the production of ENS and lipids. 

However, the current study only focusses on the triple production of biomass, EPS and ENS only. 
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For broth replacement ratio (BRR), the percentage was in the range of 75 to 90% due to 

removal of media less than 50%, which resulted in a higher level of waste accumulation and 

autolysis. 

3.2. Pellet morphology and diameter of G. lucidum for biomass production in RBF 

The adaptation of the culture and the growth condition were observed during the RBF cycle 

from R1 to R7, where the RBF was performed for biomass production on day 9, and 11, as 

highlighted in Figure 1 (left blue box). As shown in Figure 2A, the 75% broth replacement ratio at 

time point day 11 started (R1) with thick-branched pellet formation. The thick branch started to 

detach from the mother pellet producing a second-generation pellet (hairy pellet) at R2. The surface 

of the hairy pellet began to increase at R4 and continue to disperse at R6. Formation of starburst-like 

pellet indicates a new cycle of culture, along with continuous replacement of old media with the new 

one at R6, and the small-compact pellets were formed at R7. Formation of hairy like structure around 

the pellet during the seven cycles of RBF indicated the continuous growth of fungal pellet and the 

new environment created by the replacement of media made the growth of the culture varied [4]. 

In Figure 2B, the biomass production and pellet diameter are shown. We observed that the 

highest biomass production (34.31 g/L) was given in BRR of 75% and BRTP at day 11 (Table 1) 

followed by biomass production (32.38 g/L) in BRR of 90% and BRTP at day 11. The least biomass 

production (12.02 g/L) was given in BRR of 60% and BRTP at day 11. From the results, we can 

observe RBF gave high biomass production in the early stationary phase (day 11) with small-

compact pellet formation. Production of biomass decreased from R1 to R3 and started to increase 

from R4 till R7. We can observe the growth trending, R4 recorded the biggest pellet diameter size 

with the lowest biomass production, while R7 gave the highest production of biomass with small 

diameter pellet. The highest biomass (9.51 ± 0.2 g/L) was produced in cycle R7 with pellet 

diameter (49.00 ± 0.82< d <51.33 ± 1.25) μm, which was recorded to be most significant for biomass 

production in BRR 75%, BRTP at day 11. The compact pellet structure gave high biomass production, 

which was in agreement with the work done using Ganoderma pfeifferi by Supramani et al., 2019a [4].  
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Figure 1. Batch fermentation growth curves and glucose consumption for the generation of broth replacement time point (BRTP) for 

biomass 7-9-11(left blue box), exopolysaccharide (EPS) 9-11-13 (middle green box) and endopolysaccharide (ENS) 11-13-15 (right red box) 

of Ganoderma lucidum strain QRS 5120. 
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Figure 2. Pellet morphology (A) and diameters (B) of G. lucidum QRS 5120 for biomass production in repeated-batch fermentation at broth 

replacement time point (BRTP) Day 11 and broth replacement ratio (BRR) of 75% using initial media pH 4, 100 rpm, temperature 30 ℃, 

and at 5-day interval between each cycle. All other fermentation media compositions were all the same [(g/L): Glucose 30, KH2PO4 0.5, 

K2HPO4 0.5, MgSO47H2O 0.5, YE 1, NH4Cl 4]. R1–R7 means fermentation repetition in cycles.   
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3.3. Pellet morphology and diameter of G. lucidum for EPS production in RBF 

RBF was performed for EPS production at day 9, 11 and 13, as shown in Figure 1 (green middle 

box). Based on the factors involved (BRTP and BRR) in repeated-batch fermentation, the highest 

EPS production was at BRTP day 13 and broth replacement ratio 75% with a total production of 4.34 g/L 

for seven cycles (R1–R7).  

The morphological changes of G. lucidum during RBF for EPS production are shown in Figure 3, 

indicating that pellet diameters were gradually increased from R1, R2 and R3, with the largest pellet 

in R4 (54.33 ± 0.94 < d <57.67 ± 1.63) μm. There was a slightly decreased pellet size at R5 and R6 

before increasing again at R7. Figure 3A indicates that second-generation dispersed pellets from R1 

(initial cycle) transformed to small hairy-pellets (starburst like appearance) with a few first-

generation pellets (indicated by the yellow-brown colour) at R1. The formation of starburst-like 

pellet decreased at R2 with a few formations of a smooth-bigger pellet. The size of the pellet got 

bigger up to R4, with the formation of a thick-branched pellet. The thick branch from the pellet 

started to detach from the mother pellet to form a new pellet generation at R5 and R6. The formation 

of thick-branched feathers was detected at R6 and looked like a dispersed pellet up to R7. The 

growth for each cycle varied, as it involved the substitution of the old media with the new one, thus 

providing a new environment and continuous nourishment for the fungal culture. 

In Figure 3B, EPS production and pellet diameter are shown for BRR of 75% and BRTP at day 13, 

which resulted in the highest EPS production compared to other BRTP and BRR. The production of 

EPS at R1 gave the highest production of EPS with 1.70 ± 0.0009 g/L and pellet diameter (34.33 ± 

0.94 < d <35.67 ± 0.94) μm. At this time point and ratio, EPS favoured an ovoid-starburst pellet. 

Such findings were in agreement with the previous work by Wan-Mohtar et al., 2016 [4] reported 

that G. lucidum EPS production was the highest upon the formation of ovoid pellets. Another work 

by Supramani et al., 2019a [4] also stated that small-dispersed pellet gave the highest EPS production. 

Formation of starburst (hairy appearances) around the pellet promoted the production of EPS, as it 

was secreted in the outer layer of mycelial pellet structure [4]. 

3.4. Pellet morphology and diameter of G. lucidum for ENS production in RBF 

The highest ENS production by RBF was at BRTP day 13, which was during the transition phase 

and BRR 90%, with a total production of 2.43 g/L for seven cycles (R1–R7). Based on Figure 4A, the 

pellet had dispersed at the first cycle (R1) to generate the starburst-like pellet and become a large-

smooth pellet at R2. The size of the pellet increased at R3 with the formation of dense pellet, and the 

culture became cloudier (under macroscopic observation) than the previous cycle. The thick-

branched pellet with a few clumped feathers formed at R4 indicated that two different generations of 

pellet formed inside the flask and the branch started to detach and became denser.  

Figure 4B shows the diameter of pellet for production of ENS at BRR of 90% and BRTP at day 13 

that produced the highest yield of ENS using RBF strategy. In the second cycle, the highest ENS 

production, which was 0.56 ± 0.0004 g/L, was produced with a diameter range (34.00 ± 2.05< d < 

38.67 ± 0.94) μm. At this time point and ratio, ENS favours large-hollow pellet as the ENS was 

produced inside the mycelium [14]. 
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Figure 3. Pellet morphology (A) and diameters (B) of G. lucidum QRS 5120 for exopolysaccharide (EPS) production in repeated-batch 

fermentation at broth replacement time point (BRTP) Day 13 and broth replacement ratio (BRR) of 75% using initial media pH 4, 100 rpm, 

temperature 30 ℃, and at 5-day interval between each cycle. All other fermentation media compositions were all the same [(g/L): Glucose 

30, KH2PO4 0.5, K2HPO4 0.5, MgSO47H2O 0.5, YE 1, NH4Cl 4]. R1–R7 means fermentation repetition in cycles. 
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Figure 4. Pellet morphology (A) and diameters (B) of G. lucidum QRS 5120 for endopolysaccharide (ENS) production in repeated-batch 

fermentation at broth replacement time point (BRTP) Day 13 and broth replacement ratio (BRR) of 90% using initial media pH 4, 100 rpm, 

temperature 30 ℃, and at 5 = day interval between each cycle. All other fermentation media compositions were all the same [(g/L): Glucose 

30, KH2PO4 0.5, K2HPO4 0.5, MgSO47H2O 0.5, YE 1, NH4Cl 4]. R1–R7 means fermentation repetition in cycles. 
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3.5. Pellet morphological comparison of biomass-EPS-ENS production of G. lucidum in RBF 

As shown in Figure 5, each biomass, EPS and ENS productivity favours different pellet 

morphological characteristics. For high biomass production, it favoured a small-compact pellet with 

a mean diameter of 22.34 μm, while ovoid-starburst pellets with a mean diameter of 35.0 μm 

favoured high EPS production. Meanwhile, large-hollow pellets with a mean diameter of 36.34 μm 

favoured high ENS.  

Figure 5 also represents the comparison of each biomass, EPS and ENS production in RBF for 

G. lucidum QRS 5120 mycelium in the shake flask. For the fermentation period, the batch took 31, 33 

and 35 days for one run, starting from the initial subculture phase. Nonetheless for RBF, it provided 

continuous production in an interval of five days only (up to seven cycles), which shortened the time. 

Moreover, Wan-Mohtar et al., 2016 [5] did six-day intervals for each RBF cycle for G. lucidum 

BCM 31549. Remarkably, this strain successfully did a 5-day interval, thus making the fermentation 

time shorter. The strain studied by Wan Mohtar et al., 2016 [13] survived until the fifth cycle, and 

after the fifth cycle, the autolysis event took place, indicated by the colouration of pellet to 

yellowish-brown. For this strain, it managed to survive until the seventh cycle, which was more 

productive and showed that G. lucidum cells demonstrated robustness to the RBF process [5]. The 

cycles had to stop at R7 due to pellet colour changes (indicating autolysis behaviour) and potential 

toxic metabolite build-up that may have disrupted the morphology [5]. 

3.6. Pellet morphological comparison of the current work on G. lucidum for biomass-EPS-ENS 

production in RBF based on available literature 

Table 1 shows the available reported studies on the pellet diameter and morphological 

characteristics for the Ganoderma species using a batch fermentation technique for biomass-EPS-

ENS production. The comparison shows that all the studies did not report on the high potential of 

ENS production [15] compared to the current work. All reported studies demonstrated the 

relationship between pellet morphology and high EPS production in a fermentation process, whereas 

the current study highlighted the triple production of biomass, EPS and ENS for Malaysian 

Ganoderma lucidum. Supramani et al., 2019b [4] and Wan-Mohtar et al., 2016 [5] indicated that both 

G. pfeifferi and G. lucidum BCM 31549 showed resilience to shear stress and marked adaptability to 

the RBF strategy, with high survivability for sustainable EPS production in an extended fermentation 

strategy. The current study presents the pellet morphology and diameter for production of not only 

the EPS but also biomass and ENS (large-hollow pellet) in repeated-batch fermentation. To our 

knowledge, there is no work has been done for the production of ENS using RBF technique. 

Moreover, the production of EPS using RBF was the highest compared to other studies. 
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Figure 5. Comparison for production and pellet morphology of biomass, exopolysaccharide (EPS) and endopolysaccharide (ENS) for G. 

lucidum QRS 5120 in repeated-batch fermentation. *BRTP = broth replacement time point, BRR = broth replacement ratio, R1 – R7 = 

fermentation repetition in cycles. 
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Table 1 Comparison of the current work on Ganoderma sp. fermentation regarding biomass, exopolysaccharide (EPS) and 

endopolysaccharide (ENS) production and its morphology.  

Ganoderma 

sp. 

Mode Flask/ 

bioreactor 

Initial 

glucose 

concentration 

(g/L) 

Agitation 

speed 

(rpm) 

Product Production 

(g/L) 

Pellet morphology Pellet diameter 

(μm) 

References 

G. lucidum 

QRS 5120 

RBF 250 mL 

flask 

30 100 Biomass 34.31 Small-compact pellet 20.67 < d < 24.00 Current 

work 
EPS 4.34 Ovoid-starburst pellet 34.33 < d < 35.67 

ENS 2.43 Large-hollow pellet 34.00 < d < 38.67 

G. pfeifferi 

IMI 379841 

Batch 250 mL 

flask 

9 120 Biomass 3.63 Large-compact pellet 40.00 < d < 40.67 [4] 

EPS 0.65 Small disperse pellet 14.33 < d < 16.00 

ENS NA NA 

 

NA 

G. lucidum 

BCM 31549 

RBF 500 mL 

flask 

50 100 Biomass 1.62 NA NA [5] 

EPS 0.20 Ovoid pellet 

ENS NA NA 

 

G. lucidum 

CCRC36123 

Fed-

batch 

15 L 

bioreactor 

35 300 Biomass 26.60 NA NA [21] 

EPS 4.55 Freely dispersed and 

clumped pellets 

ENS NA NA 

 

Continued on next page 
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Ganoderma 

sp. 

Mode Flask/ 

bioreactor 

Initial 

glucose 

concentration 

(g/L) 

Agitation 

speed 

(rpm) 

Product Production 

(g/L) 

Pellet morphology Pellet diameter 

(μm) 

References 

G. lucidum Batch 500 mL 

flask 

40 150 Biomass 5.41 NA NA [22] 

EPS 2.63 Slight roughness 

around the edge 

pellets 

 

800 ≤d < 2500 

ENS NA NA NA 

G. applanatum 

AMRL 341 

Batch 100 mL 

flask 

30 120 Biomass 13.34 Looser masses of 

hyphae 

NA  [19] 

EPS 0.55 

ENS 5.89 

 

G. lucidum 

strain Ga. l 4 

Batch 10 L 

bioreactor 

20 100 Biomass 10.00 Spherical pellets NA  [23] 

EPS 0.68 

ENS 3.30 

 

G. lucidum 

CCGMC 

5.616 

Batch 250 mL 

flask 

35 120 Biomass 15.50 NA < 10000  [24] 

EPS 0.63 

ENS 1.06 
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3.7. FTIR analysis of EPS and ENS 

FTIR spectroscopy was used to identify the position and anomeric configuration of the 

glycosidic linkage in the glucan of the targeted EPS-ENS extracts from G. lucidum in Figure 6 (A = 

EPS, B = ENS[25]. Overall, the absorption in the region between 1250 cm
-1

 and 1650 cm
-1

 indicated the 

sample was a polysaccharide [26]. The strong, broad peak in the absorption region between 3000 cm
-1

 

and 3500 cm
-1

 indicated the stretching vibration of O–H groups in the sugar residue as well as 

showing the presence of polyhydroxilic compounds [10,27]. The absorption peaks at 2924 cm
-1

 in A 

and 2925 cm
-1

 in B were associated with the stretching vibration of C–H in the sugar ring, indicating 

the presence of a methylene group, –CH2 [2]. The absorption peak in A (1636 cm
-1

) and B (1635 cm
-1

) 

showed the water bending vibration in the polysaccharide [2,28]. The absorbance at 1073 cm
-1

 in A 

and 1077 cm
-1

 in B also shows the presence of C–O–C and C–O bonds stretching vibrations. 

Furthermore, the presence of C–O, C–O–C and O–H stretching vibrations absorption peaks resembles 

the characteristic of a polysaccharide structure [2,10]. Besides, according to Usuldin et al., 2020 [2], the 

finger-print region from 850 cm
-1

 to 1000 cm
-1

 is able to determine the type and anomeric 

configuration of the polysaccharide, and Wan-Mohtar et al., 2016 [10] also reported that the 

absorption region between 700 cm
-1

 to 950cm
-1

 is for the anomeric region. The absorbance at 890 cm
-1

 in 

A and 892 cm
-1

 in B confirmed that the anomeric configuration of the glycosidic linkage was in β 

configuration [2,29]. Thus, based on the absorption peaks, it could be summarised that the structural 

characteristics of the polysaccharide (both from EPS and ENS) from the mycelium G. lucidum was a 

β-glucan. 

 

Figure 6. FTIR spectra result of β-glucan (A: crude exopolysaccharide (EPS), B: crude 

endopolysaccharide (ENS)) from the mycelium G. lucidum QRS 5120 in a repeated-

batch fermentation. 
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3.8. 
1
H-NMR spectroscopic analysis of EPS and ENS 

As can be seen in Figure 7, 
1
H-NMR spectroscopic analysis of the β-glucans of EPS and ENS 

from G. lucidum was conducted to verify the presence and the structure of mycelial β-glucan at 24 ℃ 

using D2O as a solvent. The result was compared to laminarin, a standard for (1→3)-β-D-glucan. All 

of the resonated signals obtained for both glucans were in the downfield region and also produced a 

signal in the range of 4.3 ppm to 5.6 ppm, which is the signal for the anomeric proton of β-

configuration [25,30]. The resonance signals with the chemical shift of 3.87 ppm and 3.81 ppm were 

assigned for proton OH-4 and OH-6, respectively, which was similar to the standard laminarin, while 

the signals of EPS at 5.1 ppm and ENS at 4.5 ppm were assigned to OH-2, the anomeric proton [2,4]. 

This was agreed by Wan-Mohtar et al., 2016 [10] where they reported that the glucans of G. lucidum had 

the spectrum chemical shifts between 3.9 ppm and 5.4 ppm. Therefore, based on the FTIR (Figure 6) and 
1
H-NMR results (Figure 7) proved that the glucans EPS and ENS were likely composed of (1-3)-β-

D-linkages (a typical structure of β-glucan), as mentioned by Supramani et al., 2019b [4]. 

 

Figure 7. 
1
H-NMR spectra of β-D-glucan (BG) of (A) laminarin (Laminaria digitata) 

standard, (B) exopolysaccharide (EPS) and (C) endopolysaccharide (ENS) derived from 

G. lucidum QRS5120 mycelium in a repeated-batch fermentation. 
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3.9. Anti-oral cancer 

To evaluate the bioactive potential of BG from one of the extracts, only the cytotoxic effect of 

EPS-BG from G. lucidum was tested against the normal gingival fibroblast cell line (hGF) and oral 

cancer cell line (ORL-48). Figure 8 shows the morphological observation of hGF cells (Figure 8B1 

and 8B2) and ORL-48 cells (Figure 8A1 and 8A2) upon 72 hours of treatment with EPS-BG at 0 mg/mL 

and 4 mg/mL. The EPS-BG showed antiproliferative activity against ORL-48 cells, as Figure 8A2 

showed a reduction in cell growth compared to control (Figure 8A1). In contrast, no change was 

observed in the cell viability for the hGF cell line. The half-maximal inhibitory concentration (IC50) 

for hGF cell line were IC50 > 4 mg/mL, which suggest that BG is safe for normal cells, but ORL-48 

cell line showed an IC50 of 0.23 mg/mL, which indicates that BG is more cytotoxic towards cancer 

cells. It can reduce their proliferation, as suggested by Zeng et al., 2020 [31]. A lower IC50 value 

demonstrated higher toxicity and vice versa [32]. The tested EPS-BG concentration (<4 mg/mL) was 

considered low, yet effective against both normal and cancerous cell line as in agreement with the 

same EPS-BG from French-originated G. lucidum (60 µg/mL) [10]. Thus, such BG could be 

suggested as a high potential natural drug compound.  

 

Figure 8. Cytotoxic effect and IC50 value (half maximal inhibitory concentration) of 

beta-glucan (BG) from liquid fermentation of Ganoderma lucidum QRS 5120 mycelium 

against oral cancer cell line (ORL-48) (Figure A1; 0 mg/mL and A2; 4 mg/mL) and normal 

gingival cell line (hGF) (Figure B1; 0 mg/mL and B2; 4 mg/mL). Red circle (Figure A2) 

shows the free matrix in the media due to a decrease in cells. Bar = 20 μm. 
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4. Conclusions 

For each biomass, EPS and ENS production favoured a different pellet diameter and morphological 

characteristics for G. lucidum when grown in a repeated-batch fermentation. Biomass (34.31 g/L) 

production favoured small-compact pellets with a diameter range of 20.67 μm < d < 24.00 μm. 

Meanwhile, EPS (4.34 g/L) production favoured ovoid-starburst pellets with a diameter range of 

34.33 μm < d <35.67 μm and ENS (2.43 g/L) favours large-hollow pellets with a diameter range of 

34.00 μm < d <38.67 μm. G. lucidum pellets successfully sustain extended fermentation in RBF up 

to seven cycles. The structure of a crude polysaccharide from the mycelium of G. lucidum was β-

glucan in the form of (1-3)-β-D-linkages for EPS and ENS. The extracted EPS β-glucan possesses 

anti-oral cancer activity. 
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