Hafidzah, F., Bijarimi, M., Alhadadi, W., Salleh, S., Norazmi, M., Norazmi, E.

DOI: 10.22146/ijc.54036

- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, 26300, Malaysia
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia

Abstract
This paper reports the effects of polypropylene-graft-maleic anhydride (PP-g-MA) and graphene nanoplatelet (GNP) on tensile stress of various PLA/PP weight ratio. The PLA/PP blends prepared with the ratio 70/30, 80/20, and 90/10 with the addition of PP-g-MA (1 to 5 phr) and GNP (1 to 3 phr) by using an injection molding machine. The tensile stress (MPa) was analyzed based on 11 runs of full factorial design. The results showed that the tensile stress of PLA/PP blends gradually increased after the addition of PP-g-MA and GNP. There is a relationship between PP-g-MA and GNP which causes a positive impact on the mechanical properties of PLA/PP blends. The optimum tensile stress of 50.06 MPa achieved at the ratio of 90/10 blends with 5 phr of PP-g-MA and 3 phr of GNP. © 2021, Gadjah Mada University. All rights reserved.

Author Keywords
Graphene nanoplatelets (GNP); Poly(lactic acid)(PLA); Polypropylene (PP); Tensile stress

Funding details
FRGS/1/2019/TK05/UMP/02/1, PGRS 1903125
Universiti Malaysia PahangRDU190380

Funding details
The authors wish to acknowledge the Universiti Malaysia Pahang (UMP) for the financial assistance provided under the internal research grants RDU190380 (Center of Excellence for Advanced Research in Fluid Flow), FRGS/1/2019/TK05/UMP/02/1, and PGRS 1903125.

References
- Bijarimi, M., Amirul, M., Norazmi, M., Ramli, A., Desa, M.S.Z., Anuar Desa, M.D., Abu Samah, M.A. Preparation and characterization of poly (lactic acid) (PLA)/polyamide
(PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites

- Anstey, A., Codou, A., Misra, M., Mohanty, A.K.
 Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Fractionation crystallization phenomena and mechanical performance

- Zhang, K., Nagarajan, V., Misra, M., Mohanty, A.K.
 Supertoughened renewable PLA reactive multiphase blends system: Phase morphology and performance

- Tengsuthiwat, J., Asawapirom, U., Siengchin, S., Karger-Kocsis, J.
 Mechanical, thermal, and water absorption properties of melamine– formaldehyde-treated sisal fiber containing poly(lactic acid) composites

- Nehra, R., Maiti, S.N., Jacob, J.
 Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends

- Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., Hamada, H.
 Effect of compatibilizer on PLA/PP blend for injection molding

- Lee, T.W., Jeong, Y.G.
 Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes

- Choudhary, P., Mohanty, S., Nayak, S.K., Unnikrishnan, L.
 Poly(L-lactide)/poly propylene blends: Evaluation of mechanical, thermal, and morphological characteristics

- Chen, R., Zou, W., Zhang, H., Zhang, G., Yang, Z., Qu, J.
 Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: Analysis of the mechanical properties, morphology and thermal behavior

 An investigation on compatibilization threshold in the interface of polypropylene/polylactic acid blends using rheological studies

- Yoo, T.W., Yoon, H.G., Choi, S.J., Kim, M.S., Kim, Y.H., Kim, W.N.
 Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends

- Lee, H.S., Kim, J.D.
 Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier

- He, Q., Yuan, T., Zhang, X., Luo, Z., Haldolaarachchige, N., Sun, L., Young, D.P., Guo, Z.
 Magnetically soft and hard polypropylene/cobalt nanocomposites: Role of maleic anhydride grafted polypropylene

- Ploypetchara, N., Suppakul, P., Atong, D., Pechyen, C.
 Blend of polypropylene/poly(lactic acid) for medical packaging application: Physicochemical, thermal, mechanical, and barrier properties

- Zawawi, E.Z.E., Romli, A.Z., Suli, S.F.M., Isnin, M.A.
 The effect of MAPP compatibilizing agent on the mechanical and thermal properties of polypropylene/PLA blends

- Wang, X., Liu, W., Li, H., Du, Z., Zhang, C.
 Role of maleic-anhydride-grafted-polypropylene in supercritical CO2 foaming of poly (lactic acid) and its effect on cellular morphology

- Nofar, M., Salehiyan, R., Ciftci, U., Jalali, A., Durmuş, A.
 Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nano clay

- Bijarimi, M., Shahadah, N., Ramli, A., Nurdin, S., Alhadadi, W., Muzakkar, M.Z., Jaafar, J.
 Poly(lactic acid) (PLA)/acrylonitrile butadiene styrene (ABS) with graphene nanoplatelet (GNP) nanocomposites

- Alhadadi, W., Almaqtari, A., Hafidzah, A., Bijarimi, M., Desa, M.S.Z., Merzah, H., Normaya, E., Norazmi, M.
 Thermal stability of melt-blended poly (lactic acid) (PLA)/polyamide 66 (PA66)/graphene nanoplatelets (GnP)

 Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites

- Mandal, D.K., Bhunia, H., Bajpai, P.K.
 Thermal degradation kinetics of PP/PLA nanocomposite blends
- Azizi, S., Azizi, M., Sabetzadeh, M.
 The role of multiwalled carbon nanotubes in the mechanical, thermal, rheological, and electrical properties of PP/PLA/MWCNTs nanocomposites

- Nuñez, K., Rosales, C., Perera, R., Villarreal, N., Pastor, J.M.
 Nanocomposites of PLA/PP blends based on sepiolite

- Shrivastava, N.K., Wooi, O.S., Hassan, A., Inuwa, I.M.
 Mechanical and flammability properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and nanocomposites: Effects of compatibilizer and graphene

- Kashi, S., Gupta, R.K., Kao, N., Hadigheh, S.A., Bhattacharya, S.N.
 Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices

- Kausar, A., Ur Rahman, A.
 Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite

- Tu, C., Nagata, K., Yan, S.
 Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene

- Ajorloo, M., Fasihi, M., Ohshima, M., Taki, K.
 How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller?

- Ahmad, S.R., Xue, C., Young, R.J.
 The mechanisms of reinforcement of polypropylene by graphene nanoplatelets

- Vadori, R., Misra, M., Mohanty, A.K.
 Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene

- Brandenburg, R.F., Lepienski, C.M., Becker, D., Coelho, L.A.F.
 Influence of mixing methods on the properties of high density polyethylene nanocomposites with different carbon nanoparticles

- Ghasemi, F.A., Daneshpayeh, S., Ghasemi, I.
 Multi-response optimization of impact strength and elongation at break of nanocomposites based on polypropylene/polyethylene binary polymer matrix in the presence of titanium dioxide nanofiller
Dzul-Cervantes, M., Herrera-Franco, P.J., Tábi, T., Valadez-Gonzalez, A.
Using factorial design methodology to assess PLA-g-Ma and henequen microfibrillated cellulose content on the mechanical properties of poly(lactic acid) composites

Codou, A., Anstey, A., Misra, M., Mohanty, A.K.
Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behaviour

Jariyakulsith, P., Puajindanetr, S.
Relationship between compatibilizer and yield strength of PLA/PP Blend

Inuwa, I.M., Hassan, A., Shamsudin, S.A.
Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/ polypropylene nanocomposites

Polypropylene/graphene nanocomposites: Effects of GNP loading and compatibilizers on the mechanical and thermal properties

Correspondence Address
Bijarimi M.; Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, Malaysia; email: bijarimi@ump.edu.my

Publisher: Gadjah Mada University

ISSN: 14119420
Language of Original Document: English
Abbreviated Source Title: Indones. J. Chem.
2-s2.0-85101167073
Document Type: Article
Publication Stage: Final
Source: Scopus