Effect of TMP-based-cottonseed oil-biolubricant blends on tribological behavior of cylinder liner-piston ring combinations

Gul, M.\(^a\,b\), Zulkifli, N.W.M.\(^a\), Masjuki, H.H.\(^a,\,c\), Kalam, M.A.\(^a\), Mujtaba, M.A.\(^a,\,d\), Harith, M.H.\(^a\), Syahir, A.Z.\(^a\), Ahmed, W.\(^a\), Bari Farooq, A.\(^b\)

\(^a\)Center for Energy Science, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
\(^b\)Department of Mechanical Engineering, Faculty of Engineering and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan
\(^c\)Department of Mechanical Engineering, Faculty of Engineering, IIUM, Kuala Lumpur, 50728, Malaysia

Abstract
Cottonseed oil-based biolubricant was synthesized by the TMP-based transesterification process. 10–50% by volume blends of TMP-based cotton-biolubricant and SAE-40 were prepared and tested on the high-frequency-reciprocating-rig with engine cylinder-liner and piston-ring combination to investigate their tribology. While tribological characteristics were also evaluated by four-ball tribo-testers at high constant load of 785 N. 10% addition of cotton-biolubricant showed the lowest friction and wear as compared to SAE-40 but >10% volume of cotton biolubricant in blend increased the wear and friction considerably as tested by both HFRR and four-ball. Hence, 10% addition of TMP-cotton-biolubricant can be utilized as an energy-saving lubricant additive to partially reduce the dependency on petroleum-based lubricant for automotive engine application. © 2020 Elsevier Ltd

SciVal Topic Prominence

Topic: Biolubricants | Base Stock | Trimethylolpropane
Prominence percentile: 95.080

Chemistry database information

Substances

Author keywords

COF, Cotton-biolubricant, Engine cylinder-piston ring, Wear

Indexed keywords

Cited by 1 document

Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology
Mujtaba, M.A., Masjuki, H.H., Kalam, M.A.
(2020) Energies

Investigation of tribological properties and engine performance of polyol ester–based bio-lubricant: Commercial motorbike engine oil blends
Kotturu, C.M.V.V., Srinivas, V., Vandana, V.

Tribological characteristics of Calophyllum ester based biolubricant - Commercial engine oil blends
Rama Rao Chebattina, K., Srinivas, V., Pranay, G.V.S.
Optimization of wear and friction characteristics of Phyllanthus Emblica seed oil based lubricant using response surface methodology

Funding details

<table>
<thead>
<tr>
<th>Funding sponsor</th>
<th>Funding number</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahauddin Zakariya University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama Commission on Higher Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universiti Malaya</td>
<td>FP142-2019A</td>
<td>MOHE</td>
</tr>
<tr>
<td>Ministry of Higher Education, Malaysia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funding text
Authors would like to thanks all the members of CES, Faculty of Engineering, University of Malaya, Malaysia for their support through the research grant no FP142-2019A under the Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education, Malaysia and Bahauddin Zakariya University, Multan, Pakistan for the financial support under the Higher Education Commission Project "Faculty Development Program of Bahauddin Zakariya University, Multan (100 Ph.D. Foreign Scholarships) (Prime Minister's Directive), Pakistan" with grant No. PF/18/22-80/Admin/13101.

References (37)

http://www.springerlink.com/content/4s5v29s2l4v9s94v/app/home/journal.asp?refererrer=parent&backto=searchpublicationsresults.1-2
doi: 10.1023/B:TRIL.0000015203.08570.82
View at Publisher

www.elsevier.com/locate/triboint
View at Publisher

doi: 10.1080/15567031003735303
View at Publisher

View at Publisher

www.elsevier.com/locate/triboint
doi: 10.1016/j.triboint.2015.04.021
View at Publisher

doi: 10.1080/00908310490438605
View at Publisher

doi: 10.1016/j.indcrop.2006.06.008
View at Publisher
Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring-cylinder liner combination

http://pij.sagepub.com/content/by/year
doi: 10.1177/1350650114535384

Compatibility of automotive materials in biodiesels: A review

doi: 10.1016/j.fuel.2010.10.042

A Review: Role of Fatty Acids Composition in Characterizing Potential Feedstock for Sustainable Green Lubricants by Advance Transesterification Process and its Global as Well as Pakistani Prospective

http://www.springer.com/life+sci/plant+sciences/journal/12155
doi: 10.1007/s12155-019-10040-7

A review on bio-based lubricants and their applications

Tribological Characteristics of Calophyllum inophyllum–Based TMP (Trimethylolpropane) Ester as Energy-Saving and Biodegradable Lubricant

www.tandf.co.uk/journals/titles/10402004.asp
doi: 10.1080/10402004.2015.1025934

The physicochemical and tribological properties of oleic acid based triester biolubricants

doi: 10.1016/j.indcrop.2011.03.025

Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant

doi: 10.1016/j.energy.2013.01.038
<table>
<thead>
<tr>
<th>#</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>S.G. Dattrao Experimental, investigation on usage of cottonseed oil and esterifies cottonseed oil as lubricant in IC engines, in 2018 Bangkok, Thailand.</td>
</tr>
</tbody>
</table>
Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig
https://www.journals.elsevier.com/energy
View at Publisher

28 Zulkifli, N.W.M., Kalam, M.A., Masjuki, H.H., Al Mahmud, K.A.H., Yunus, R.
The effect of palm oil trimethylolpropane ester on extreme pressure lubrication
doi: 10.1177/1350650113500945
View at Publisher

29 Arumugam, S., Sriram, G.
Effect of Bio-Lubricant and Biodiesel-Contaminated Lubricant on Tribological Behavior of Cylinder Liner-Piston Ring Combination
doi: 10.1080/10402004.2012.667517
View at Publisher

30 Sripada, P.K., Sharma, R.V., Dalai, A.K.
Comparative study of tribological properties of trimethylolpropane-based biolubricants derived from methyl oleate and canola biodiesel
doi: 10.1016/j.indcrop.2013.07.018
View at Publisher

31 Katyal, A., Morrison, R.D.
Forensic applications of contaminant transport models in the subsurface
isBN: 978-0123695222-2
View at Publisher

32 Zulkifli, N.W.M., Azman, S.S.N., Kalam, M.A., Masjuki, H.H., Yunus, R., Gulzar, M.
Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester
doi: 10.1016/j.triboint.2015.03.024
View at Publisher

33 CN103173268A, P.
Lubricating oil anti-wear agent and preparation method thereof
何, 刘继滨, 宫先顺. Editor. 2013: China.
The effect of oxidation on the tribological performance of few vegetable oils

(Open Access)

http://www.elsevier.com/journals/journal-of-materials-research-and-technology/2238-7854
do: 10.1016/S2238-7854(12)70017-0

Noorawzi, N., Samion, S.

Tribological Effects of Vegetable Oil as Alternative Lubricant: A Pin-on-Disk Tribometer and Wear Study

www.tandf.co.uk/journals/titles/10402004.asp
do: 10.1080/10402004.2015.1108477

Arumugam, S., Sriram, G.

Synthesis and characterisation of rapeseed oil bio-lubricant - Its effect on wear and frictional behaviour of piston ring-cylinder liner combination

do: 10.1177/1350650112458398

Optimization of wear and friction characteristics of Phyllanthus Emblica seed oil based lubricant using response surface methodology (Open Access)

http://www.journals.elsevier.com/egyptian-journal-of-petroleum
do: 10.1016/j.ejpe.2018.04.001

© Copyright 2020 Elsevier B.V., All rights reserved.