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 Drought is regarded as one of the limiting factors in rice production nationally and globally. The present study 
was conducted to study morpho-physiological and biochemical responses of rice genotypes to drought stress, 
to identify potential traits for use as a selection criterion in breeding drought-tolerant rice at seedling stage 
and finally to identify rice genotype resistant to drought stress for use as parents in future breeding. The 
experimental design used was a split-plot design with three replications, with drought stress as the main plot 
and rice genotypes as the sub-plot. The main plots consisted of control (normal irrigation) and drought stress. 
The sub-plots consisted of twelve rice genotypes namely Apami (V1), Boewani (V2), Basmati 370 (V3), Cica-
4 (V4), Dular (V5), Jarom mas (V6), Kalarata (V7), Biris (V8), Haiboq (V9), Moroberekan (V10), MR 297 (V11) 
and Aerob 1 (V12). Results showed that drought stress led to a decrease in plant height, leaves size, root 
length, total dry weight, and number of leaves but an increment in proline content. The genotype Apami and 
Kalarata were found to accumulate higher proline content indicating potential resistant ability towards 
drought stress. Dular and Aerob1, along with tolerant control genotype, Moroberekan, on the other hand, 
recorded a lower SES score. Leave size, root length, and plant height could also be used as a selection criterion 
in breeding drought-tolerant rice due to high values of broad-sense heritability and genetic advance by 
percentage of mean (GAM). Nevertheless, further study on the genetics and physiological basis of tolerant 
ability at reproductive growth stages are necessary in order to assess grain yield potential of the potentially 
tolerant genotype reported in this study.  
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1. INTRODUCTION 

Most rice cultivars are susceptible to drought due to its small root system, 

thin cuticular wax, and swift stomata closure. Seed germination and early 

seedling growth are among the most critical stages for water stress 

(Ahmad et al., 2009). During the seedling growth stage, the effects of water 

deficit lead to inhibition of cell growth, expansion, and division (Jaleel et 

al., 2008). Drought is also a major problem that limits the adoption of high-

yielding rice varieties in drought-prone rainfed rice environments where 

high sensitivity to even short periods of water deficit constitutes a risk that 

farmers cannot afford to take (Lafitte et al., 2007). To improve crop 

productivity, breeding is one of the suggested approaches, and it is, 

therefore, necessary to understand the mechanism of plant responses to 

drought conditions before any breeding programme for drought 

resistance is initiated. Therefore, this study was conducted to assess the 

sensitivity and tolerant ability of selected rice genotypes to drought stress 

at seedling stage with the ultimate aim to develop selection criteria for 

drought resistance and identify resistant genotypes for use as parents in 

future the breeding program. 

2. MATERIALS AND METHODS 

Twelve accessions of rice from the IIUM rice collection (Table 1) were used 

in the experiment. The accessions were originally obtained from the Rice 

Gene Bank, MARDI Seberang Perai, Pulau Pinang, Malaysia. Drought-

tolerant rice genotype Moroberekan (V10) was used as a resistant check 

and MR297 (V11) as susceptible control following (Salleh et al., 2018). 

Table 1: List of rice genotypes 

Rice genotype number  Genotype Name  Country of origin 
V1 APAMI Malaysia 
V2 BOEWANI Suriname 
V3 BASMATI 370 India  
V4 CICA 4 Colombia 
V5 DULAR  India 
V6 JAROM MAS Malaysia 
V7 KALARATA 1-24 India  
V8 BIRIS Malaysia 
V9 HAIBOQ China 
V10 MOROBEREKAN Guinea 
V11 MR219 Malaysia 
V12 PADI AEROB  Malaysia 

The experiment was conducted using a split plot design with two drought 

stress treatments, namely well-watered condition (T1) and drought stress 

at -60 kPa of soil water potential (T2). Seeds were soaked for 24 hours 
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with distilled water and followed by incubation for another 48 hours. Pre-

germinated seeds were then sown in a polybag of size 5x5 inch containing 

about 500 g of topsoil with three seeds per polybag. Drought stress 

treatment was imposed for seven consecutive days starting from 21 day 

after sowing (DAS) by withholding water application and removing any 

ponded water from the soil surface. The polybags under well-watered 

conditioned were placed in a tray full of water. Water application for the 

well-watered treatment was made by providing water (into the tray) once 

in every three days. 

The phenotyping scoring index assessment was conducted to evaluate the 

sensitivity and tolerant ability of rice genotypes to drought stress based 

on the Modified Standard Evaluation System (SES) for rice following the 

International Rice Research Institute (IRRI) guidelines (IRRI, 2013) as 

shown in Table 3.2. The assessment was made at 28 DAS. 

Table 2: Modified Standard Evaluation System (SES) scoring for 
drought in rice 

Score  Observation  Rating  
1 Leaves start to fold (shallow) Highly tolerant  
3 Leaves folding (deep V-shape)  Tolerant  
5 Leaves fully cupped (U-shape) Moderately tolerant 
7 Leaf margins touching (0-shape)  Sensitive 
9 Leaves tightly rolled  Highly sensitive  

Scoring index assessment (SES) was calculated to evaluate the sensitivity 

and tolerant ability of rice genotypes to drought stress using the Modified 

Standard Evaluation System (SES) method for rice developed by IRRI 

(2013).  Morphological parameters recorded were plant height, size of 

leaves, number of leaves, length of roots, and total dry weight collected 

and recorded at the end of stress treatment (at 28 DAS). 

The proline content in the leaves was estimated based on the method 

described by Bates et al. (1973). Genotypic variance, phenotypic variance, 

phenotypic coefficient of variance (PCV), genotypic coefficient of variance 

(GCV), broad sense heritability and expected genetic advance (GA) were 

computed based on methods described by Burton (1952). Statistical 

analysis system (SAS) software was used in data analysis. 

3. RESULTS AND DISCUSSION 

The SES drought scoring is shown in Table 2. The average value of SES 

scoring ranged from ‘5’ in V10 (Moroberekkan) to ‘9’ in V8 (Haiboq).  It 

was observed that rice genotypes V8 recorded the highest average value 

for SES scoring, which was ‘9’. According to IRRI (2013), the scale ‘9’ 

indicated that the leaves were tightly rolled. Therefore, the higher the 

value of SES scoring would indicate that the genotype was profoundly 

affected by the drought stress (very susceptible). Meanwhile,  V10, V5, and 

V12 recorded SES scoring of ‘5’, ‘6’, and ‘6’, respectively (delayed leaf 

rolling and drying), indicating that those genotypes were a little bit 

tolerant to drought stress (i.e., having some degree of resistance). 

According to Hsiao (1982), leaf rolling was induced by the loss of turgor, 

and poor osmotic adjustment in rice and delayed leaf rolling is an 

indication of turgor maintenance and dehydration avoidance 

(Blum,1989). 

Table 3: Average value of SES drought scoring in leaf rolling for 12 

genotypes. 

Rice genotype Average for SES score 

V1 8 

V2 8 

V3 8 

V4 7 

V5 6 

V6 8 

V7 8 

V8 9 

V9 8 

V10 5 

V11 8 

V12 6 

The analysis of variance indicated that all traits were significant at p<0.05 

except for the total dry weight (Table 3). This indicated prevalence of 

sufficient genetic variability in the studied materials for further selection 

and improvement of genotypes. Selection for these characters might have 

resulted in a positive impact on genetic improvement. The mean 

comparison of the phenotypic performance of 12 rice genotypes at the 

seedling stage in all morpho-physiological traits and leaf’s biochemical 

traits were summarized in table 4.   

Table 4: Mean squares of traits under drought stress condition. 

Traits Genotype (df=11) Block (df=2) Error 
PH 39.9378* 53.5219* 10.4683 
LS 80.5296* 45.8611ns 15.7075 
NOL 0.3430* 1.9820* 0.1556 
RL 57.9400* 13.3633ns 18.5642 
TDW 9.8485ns 4.7500ns 6.9621 
PRO 1.4926* 8.5708* 0.5874 

*Significant at p<0.05, ns: non-significant PH= Plant height, LS= Leaves 
size, NOL= Number of leaves, RL= Root length, TDW= Total dry weight, 
PRO= Proline.  

The effects of drought on morphological traits of rice are presented in 

Figure 1, Table 4, and Table 5. As shown in Figure 1, under drought 

conditions, plant height ranged from 5.6 cm in V11 (MR 297) to 18.27 cm 

in V6 (Jarom mas) with an overall mean of 14.78 cm while the average of 

plant height under the control treatment was 18.13 cm. V11 was observed 

to be the most affected. According to Singh et al. (2018), drought stress 

would reduce metabolic activity due to lack of water. Consequently, 

reduction in turgor pressure would affect cell division and cell elongation 

activities of the plant. As a result, the plant height would also be reduced. 

Under drought conditions, about 67% of the rice genotypes exceeded the 

average value of overall plant height at 14.78 cm. 

 

Figure 1: Effect Of Drought On Plant Height 

As shown in Table 4, the leaves size was decreased in genotypes under 

drought conditions ranging from 10.59 cm2 in V11 (MR 297) to 29.31 cm2 

in V10 (Moroberekan), with an average of 20.17 cm2 when compared to 

leaf size of 33.08 cm2 under well-watered treatment. The maximum 

reduction in leaves size of about 64.5% was observed in V11. In detail, the 

leaf size of V11 under drought conditions recorded 10.59 cm2 as compared 

to 29.84 cm2 under well-watered conditions. Drought stress is commonly 

known to reduce the overall rate of photosynthesis due to decreasing in 

both leaf area and photosynthetic rate per unit leaf area (Schuppler et al., 

1998). Bigger leaf size under drought stress was recorded in V10 at 29.31 

cm2 followed by V12 at 26.61 cm2 and V5 at 23.67 cm2, respectively. 

The average value for the number of leaves under drought stress ranged 

from 7.33 (V11) to 13.67 (V9), as shown in Table 4, with an average of 

11.67 when compared with the average number of leaves at 17.81 under 

a well-watered treatment. The V4 and V9 showed a significant reduction 

in the number of leaves between well-watered and drought stress 

conditions. This reduction indicated that drought stress would reduce the 

number of leaves in rice genotypes. Similar results were also reported by 

Singh et al. (2018), who observed that water deficit significantly reduced 

the number of leaves in rice. In addition, the number of tillers, as well as 

leaves, was reduced due to limited growth and photosynthesis processes 

in the plant (Quampah et al., 2011). Total dry weight was also found to be 

affected by the drought stress, with an average decline of about 0.61 g 

(Table 4). The average mean under well-watered condition was recorded 

at 1.68 g while the overall mean under drought was recorded at 1.07g. The 

maximum reduction of about 63% in total dry weight was observed in the 
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genotype V9 (Biris) under drought conditions. 

Results presented in Table 5 showed that there was no significant effect of 

drought stress on the root length. The maximum root length under 

drought stress at 29.7 cm was recorded in V6 while the minimum in V8 at 

13.7 cm. The average root length under well-watered, however, was 

recorded at 24.94 cm. According to Wijewardana et al. (2015), root 

systems for any crop are difficult to study because of their highly 

structured underground distribution pattern, the complexity of vigorous 

interactions with the immediate environment, and their functional 

diversity. To date, very little information has been available describing the 

effects of drought on rice root morphology and root-related traits at the 

early growth stage (Lone et al. 2019). Therefore, a deep understanding of 

how shoot and root parameters respond to early drought is important as 

these parameters provide a greater foundation for canopy development 

and are useful in improving selection criteria in breeding drought-tolerant 

cultivars. 

The highest plant height was observed in V6, followed by V10 and V7.   For 
leaves size, a genotype that has a higher mean value was V10, followed by 
V12 and V5.  In the number of leaves, V9, V1, and V2 had significantly 
higher mean value compared to other genotypes. The most extended root 
length was observed in V6, followed by V10 and V5.   In the case of total 
dry weight, the higher mean value was observed in V7, followed by V5 and 
V2. Therefore, these results suggested that V5 and V6 were more tolerant 
to drought based on their plant growth traits performance.

Means followed by the same small letter within a row is not significantly different between well-watered conditions and drought stress treatment from 
each other at P ≤ 0.05. 

 
Means followed by the same small letter within a row is not significantly 
different between well-watered conditions and drought stress treatment 
from each other at P ≤ 0.05.   

The proline analysis presented in Table 6 showed that there was no 

significant difference in the leaf’s proline content among rice genotypes 

under well-watered conditions. However, there was a large variation in 

proline accumulation between genotypes under drought stress conditions. 

Proline accumulation could be regarded as an early response of plants 

under water deficit conditions (Anjum et al., 2011). Therefore, proline 

accumulation does not only happen in a tolerant genotype but also in the 

susceptible genotype. Nonetheless, drought-tolerant genotype may 

accumulate proline for a more extended period of time than the 

susceptible genotype (Saruhan et al., 2006). This trend could be seen in 

the V7 (Kalarata) with an average mean of 2.58 µmol g-1 followed by the 

V1 (Apami) at 2.09 µmol g-1. The leaf proline content of genotype V7 

increased significantly from 1.15 µmol g−1 under well-watered to 2.58 

µmol g−1 under drought conditions. Similarly, an increase in the leaf 

proline content of V10 was also observed from 0.44 µmol g−1 under well-

watered to 0.61 µmol g−1 under drought conditions. In brief, V7 and V1 

accumulated higher proline content than other genotypes under drought 

stress conditions.  

 
Means followed by the same small letter within a column are not 
significantly different between well-watered conditions and drought 
stress treatments from each other at P ≤ 0.05. 

Table 5: Mean genotypic performance on leaves size, number of leaves, and total dry weight of 12 genotypes under well-watered and drought stress. 
 

Leaf size Number Of leaves Total dry weight 

Genotype  Well-watered Drought Stress Well-watered Drought stress Well-watered Drought stress 

V1 24.25a (±2.18) 22.46a (±2.97) 13.33a (± 0.31) 13.33a (±0.32) 1.31a (±2.40) 1.12a (±0.33) 

V2 25.42a (±6.74) 17.89a (± 2.11) 16.67a (±0.31) 12.67a (±0.41) 1.46a (±1.45) 1.16a (±1.33) 

V3 30.53a (± 8.52) 18.3a (± 1.40) 17.33a (±0.06) 12.33a (±0.55) 1.30a (±1.86) 1.10a (±0.67) 

V4 30.90a (±10.86) 17.53a (± 0.85) 22a (±0.36) 10.67b (±0.24) 1.95a (±3) 1.03b (± 2.96) 

V5 38.07a (±8.24) 23.67a (± 2.72) 12.33a (±0.49) 9.33a (± 0.26) 1.48a (±4.00) 1.60b (±0.88) 

V6 35.76a (± 0.78) 23.27a (±3.37) 22a (± 0.16) 9.67a(± 0.24) 1.87a (± 4.16) 0.74b (± 2.67) 

V7 40.95a (±10.30) 20.34a (± 3.81) 20.67a (±0.53) 11.33a (±0.31) 2.37a (±1.67) 1.81b (±1.66) 

V8 28.87a (± 8.72) 16.95a (±0.05) 19a (±0.51) 12a (±0.49) 1.78a (±1.15) 1.0a (±1.52) 

V9 20.93a (±1.91) 15.13a (±0.44) 23.67a (±0.17) 13.67b (±0.09) 2.07a (±1.45) 0.77b (±1.66) 

V10 52.09a (±12.36) 29.31a (±2.61) 12.67a (± 0.46) 10.67a (±0.25) 1.85a (±1.76) 1.02a (±0.67) 

V11 29.84a (±7.42) 10.59a (± 0.59) 20a (± 0.25) 7.33a (±0.20) 1.6a (±4.58) 0.66a (±0.33) 

V12 39.35a (±13.81) 26.61a (± 4.03) 14a (± 0.24) 11a (± 0.18) 1.10a (±3.21) 0.83a (±1) 

Table 6: Mean genotypic performance on root length of 12 genotypes 
under well-watered and drought stress. 

 
Root length 

Genotype well-watered Drought stress 

V1 25.37a (±2.34) 22.77a (±1.49) 

V2 23.53a (± 1.25) 22.73a (± 0.27) 

V3 19.17a (±2.03) 18.63a (± 2.32) 

V4 26.87a (±1.13) 24.33a (± 0.33) 

V5 27.23a (±1.89) 25.6a (± 2.46) 

V6 29.83a (±0.44) 29.7a (± 2.40) 

V7 24.6a (± 2.26) 23.77a (± 2.15) 

V8 25.77a (± 2.71) 18.93a (± 4.53) 

V9 22.83a (± 0.44) 13.7a (± 3.69) 

V10 26.43a (± 1.72) 26.13a (± 1.44) 

V11 25.2a (±1.33) 18.03a (± 3.03) 

V12 22.43a (± 0.58) 25.27a (± 1.71) 

Table 7: Mean genotypic performance on proline content in leaves of 

12 genotypes under well-watered and drought stress.  
Proline content   

Genotype  well-watered Drought stress 

V1 1.59a (±0.84) 2.10a (±0.72) 

V2 1.39a (±0.5) 0.90a (±0.69) 

V3 1.52a (±0.6) 0.77a (±0.33) 

V4 1.33a (±0.73) 1.96a (±1.13) 

V5 1.17a (±0.4) 1.45a (±0.9) 

V6 1.40a (±0.66) 0.47a (±0.28) 

V7 1.15a (±0.39) 2.58b (±0.56) 

V8 2.82a (±1.59) 1.36a (±0.65) 

V9 0.51a (±0.23) 0.88a (±0.55) 

V10 0.44a (±0.07) 0.61a (±0.3) 

V11 0.55a (±0.3) 1.60a (±0.73) 

V12 1.03a (±0.73) 0.36a (±0.27) 
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V7 and V1 accumulated higher proline content than other genotypes. This 

result may suggest that they might also possess the tolerant ability to 

drought as they accumulated higher proline content than other genotypes. 

According to Maisura et al. (2014), drought-tolerant genotype may 

accumulate higher proline content and total sugar as compared to the 

susceptible one. Yue et al. (2006) also reported that the mechanism of 

drought tolerance through osmotic adjustment as the increased 

accumulation of solutes, such as proline and total sugar. 

The results of the genetic analysis are presented in Table 7. Estimates of 

the phenotypic (VP), genotypic (VG), and environmental (VE) variances 

and the phenotypic coefficients of variation (PCV) and genotypic 

coefficients of variation (GCV) were displayed in Table 7. The lower 

genotypic coefficients of variation were 8.78 for total dry weight, and 

higher GCV is 43.74 for proline. Similarly, the lower phenotypic 

coefficients of variation were 25.06 for root length and higher PCV 75.34 

for proline. In this study, the GCV values were lower than that of PCV, 

indicating that the environment had an important role in the expression of 

these characters. Generally, quantitative characters are highly influenced 

by the environment. A quantitative trait is a measurable phenotype that 

depends on the cumulative actions of many genes and the environment. 

These traits can vary among individuals, over a range, to produce a 

continuous distribution of phenotypes.  According to Deshmukh et al. 

(1986), PCV and GCV values greater than 20% are regarded as high, 

whereas values less than 10% are considered to be low and values 

between 10 and 20% to be medium. Based on this argument, proline, leaf 

size, plant height, and number of leaves recorded high GCV and PCV while 

the root length had medium GCV but high PCV values. A similar finding was 

reported by Singh et al. (2018) that plant height and proline content in 

leaves had high PCV and GCV values. 

A heritability estimate for characters understudy was as in table 4.7. The 

estimates of heritability act as a predictive instrument in expressing the 

potential inheritance value of the phenotypic traits. Therefore, a high 

heritability value would indicate an effective selection for a particular 

trait. Dabholkar (1992) classified broad-sense heritability estimates as 

low (5-10%), medium (10-30%), and high (>30%), respectively. In the 

present study, heritability was ranged from 12.14% for total dry weight to 

57.9% for leaf size. In detail, plant height (48.4%), leaves size (57.9%), 

root length (41.3%), and proline (33.7%) were observed to be highly 

heritable traits. In contrast, number of leaves (27.27%) and total dry 

weight (12.14%) recorded lower heritability values. Similar findings were 

also reported by Patel et al. (2012) that plant height recorded high 

heritability value in rice. In addition, Islam et al. (2016) also reported that 

high heritability value for leaf area in rice. High heritability values indicate 

that the traits under study are less influenced by the environment in their 

expression. The plant breeder, therefore, may make his selection safely 

based on phenotypic expression of these traits in the individual plant by 

adopting simple selection methods. 

However, the broad-sense heritability value itself may not be a precision 

estimate of potential genetic advance due to the presence of both additive 

and non-additive gene action. Therefore, the broad-sense heritability 

estimate should be coupled by the genetic advance in the percentage of 

mean (GAM). Genetic advance in the percentage of mean gives more 

precise results in comparison to only genetic advance (Adhikari et al. 

2018). According to Jonhson et al. (1955), high heritability estimates along 

with the high genetic advance as per mean (GAM) are usually more helpful 

in predicting gain under selection than heritability alone. 

In addition, Johnson et al. (1955) also classified genetic advance as a 

percentage of mean (GAM) values from 0-10% as low, 10-20% as 

moderate, and more than 20% as high. High GAM was recorded for the 

plant height (43.68%), leaves size (47.48%), root length (33.22%), 

number of leaves (47.18%), and proline content in leaves (90.10%) (Table 

4.7). Hence, it indicated the predominance of additive gene action in 

controlling these characters. Therefore, these characters could be 

potentially improved through selection. Hence, the results of the present 

study showed that plant height, leaves size, and root length. Therefore, 

these traits could be potentially used as a selection criterion in breeding 

drought-tolerant rice at the seedling stage. However, even though the 

number of leaves has a high value of PCV and GCV, it has a lower value of 

heritability. The same goes for proline even though it has a high value of 

GAM, PCV, and GCV, and proline is considered to have a low value of 

heritability, which is only (33.7%). Thus, this morphological trait and 

biochemical trait are less preferable traits as a selection in breeding for 

drought tolerance rice. 

4. CONCLUSION 

The screening of 12 rice genotypes in this study revealed ample genetic 

diversity in concerning their response for all traits measured at the early 

stages of growth under drought stress. Physiological characters of rice 

genotypes differed in their response to drought stress. In general, drought 

stress reduced plant height, number of leaves, leaves size, root length, total 

dry weight, but increased proline content. In the present study, tolerant 

genotypes under drought stress at seedling stages could be identified 

which are consist of highly tolerant, V10, tolerant genotypes are V5 and 

V12 and moderately tolerant are V1, V6, and V7. Meanwhile, V11 is highly 

susceptible genotypes under drought stress and other genotypes 

considered as susceptible genotypes under drought stress. For heritability 

and GAM result, plant height, root length, and leaves size showed high 

heritability and GAM. Thus, these traits would be a favourable phenotypic 

trait for selection criterion in breeding for drought-tolerant rice. In 

conclusion, early-season drought stress tolerance screening using the 

platform in this study resulted in the identification of promising genotypes 

that can be harnessed by breeders for increasing the level and improving 

the sustainability of rice production to meet future demands. 
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