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Abstract. We study the phase diagrams for the Potts model with competing binary, ternary and 

quaternary interactions on Cayley tree of order 2. At vanishing temperature T, the phase 

diagram is fully determined for all values of competing binary, ternary and quaternary 

interactions. We extend the results (for the case 𝐽𝑞 = 0) obtained by Ganikhodjaev et. al. [9]. 

The results show that the appearance of addition phases: antiferromagnetic and Period 6, in the 

case of nonzero quaternary interactions for several ranges. Then, we investigate the modulated 

phase, with the phase being indicated by many different types of commensurate and 

incommensurate phases by plotting the wavevectors versus temperature. Lastly, the Lyapunov 

exponent is used to verify the stability of the periods. 

1.  Introduction 

In statistical mechanics, the lattice spin system is well known as the large class of systems, since this 

system is an idealized version of magnets. The lattice spin system can simply be thought as the angular 

momentum vector of spinning particle, and so can be represented as an arrow. The structure of the 

lattice also plays an important role in examinations of spins systems. The reason is many many-body 

physical systems of interest can effectively be treated as being on lattice, besides it makes the models 

easier to formulate, since the probabilities and other the physical quantities are defined in terms of 

sums instead of integrals.  

 

Ising model is one particular mathematical model in statistical mechanics is used to study of 

two-way translation between the behavior of the individual element (microscopic properties) and the 

properties of the system as a whole (macroscopic properties).  The Potts model, which was introduced 

by Potts in 1952, was presented as a generalization of the Ising model to more than two components 

and is the most studied model in recent years because of its wide practical applications and theoretical 

interest [1]. The idea of Potts model originates from a representation of the Ising model as interacting 

spins which can be either parallel or anti-parallel [2].  

 

One of the important advantages of considering models on Bethe lattice also known as 

Cayley Tree, is that no approximations have to be made and the calculations can be carried out with 

high accuracy. Then, the simplest way of resolving the system problems can come up with the 

solution. These problems can be solved by using mean-field theory in order to describe phase 

transition in the phase diagrams and also to study the behavior of large and complex stochastic models 

by studying a simpler model on lattice. Studies of such model may lead to a discovery of more 
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realistic systems with similar properties. Potts model as a generalization of the Ising model on Cayley 

tree with competing interactions, appeared in pioneering work of Vannimenus, has recently been 

studied extensively by ([1,3,4,7,8,9,10]). 

 

For solving the problem on a tree is much easier to understand mathematically rather than 

the set of all lattice points and is equivalent to the standard Bethe-Peierls theory [2]. In recent years, 

many researchers have studied the phase diagrams corresponding to Ising models (see [5,6,11]) and 

also 3-state lattice model (Potts model) on Cayley tree (see [7,8,9,10]). The approach is used to study 

the phase diagram of lattice model on Cayley tree is to describe the morphology of the phases, the 

stability of the phases, the transitions from one phase to another and corresponding transition lines. 

The producing the phase diagram is followed by studying the behavior of recurrence systems of 

model. 

 

In this paper, we consider the Potts model with competing interactions up to third nearest-

neighbor generations on Cayley tree of order two. We derive the recurrent equations from partition 

functions that are defined on Cayley tree. Then, we study the behavior of the recurrent equations of 

system for producing the phase diagrams. Lastly, we investigate in detail the modulated phases by 

plotting the graph of wavevectors versus temperature and verify the stability of the periods by 

studying the Lyapunov exponent. This research is an extension work that considered in [9]. 

2.  The Model Hamiltonian 

In this section, we are considering the Potts model with three competing interactions on semi-infinite 

Caylee tree 𝛤+
𝑘 of k-th order. Now, let us give some definitions to construct the model. 

 

A Cayley tree 𝛤𝑘 of order 𝑘 ≥ 1 is an infinite tree, i.e., a graph without cycles with exactly 

𝑘 + 1 edges issuing from each vertex. Let denote the Cayley tree as 𝛤𝑘 = (𝑉, 𝛬), where V is the set of 

vertices of  𝛤𝑘, 𝛬 is the set of edges of 𝛤𝑘. Two vertices x and y, where 𝑥, 𝑦 ∈ 𝑉 are called nearest-

neighbor if there exists an edge 𝑙 ∈ 𝛬 connecting them, which is denoted by 𝑙 = 〈𝑥, 𝑦〉. The distance 

𝑑〈𝑥, 𝑦〉, 𝑥, 𝑦 ∈ 𝑉, on the Cayley tree 𝛤𝑘, is the number of edges in the shortest path from x to y. For a 

fixed 𝑥0 ∈ 𝑉 we set 𝑊𝑛 = {𝑥 ∈ 𝑉|𝑑(𝑥, 𝑥
0) = 𝑛}, 𝑉𝑛 = {𝑥 ∈ 𝑉|𝑑(𝑥, 𝑥

0) ≤ 𝑛}, and Ln denotes the set 

of edges in Vn. The fixed vertex x0 is called the 0-th level and the vertices in Wn are called the n-th 

level. For the sake of simplicity we put |𝑥| = 𝑑(𝑥, 𝑥0), 𝑥 ∈ 𝑉. Two vertices 𝑥, 𝑦 ∈ 𝑉 are called second 

nearest-neighbor if 𝑑(𝑥, 𝑦) = 2. The second nearest-neighbor vertices x and y are called prolonged 

second nearest-neighbor if |𝑥| ≠ |𝑦| and is denoted by > 𝑥, 𝑦̃ <. The second nearest-neighbor 

vertices 𝑥, 𝑦 ∈ 𝑉 that are not prolonged are called one-level second nearest-neighbor since |𝑥| = |𝑦| 
and are denoted by > 𝑥, 𝑦̅̅ ̅̅̅ <. Two vertices 𝑥, 𝑦 ∈ 𝑉 are called third nearest-neighbor if 𝑑(𝑥, 𝑦) = 3. 

The third nearest-neighbour vertices x and y are called prolonged third nearest-neighbor and is 

denoted by < 𝑥, 𝑦̃ > if  𝑥 ∈ 𝑊𝑛 and 𝑦 ∈ 𝑊𝑛+3. The third nearest-neighbor vertices 𝑥, 𝑦 ∈ 𝑉 that are 

not prolonged are called two-level third nearest-neighbor is denoted by < 𝑥, 𝑦̃ >3, respectively 𝑥 ∈
𝑊𝑛+1 and 𝑦 ∈ 𝑊𝑛; i.e. they belong to the different branches of Cayley tree. 

 

We write 𝑥 ≺ 𝑦 if the path from x0 to y goes through x. We call the vertex y a direct 

successor of x, if 𝑦 ≻ 𝑥 and x, y are nearest neighbors. The set of the direct successors of x is denoted 

by S(x), i.e., if 𝑥 ∈ 𝑊𝑛, then 𝑆(𝑥) = {𝑦𝑖 ∈ 𝑊𝑛+1|𝑑(𝑥, 𝑦𝑖) = 1, 𝑖 = 1,… , 𝑘}. We observe that for any 

vertex 𝑥 ≠ 𝑥0, x has k direct successors and x0 has k+1. In this case, we will consider a semi-infinite 

Caylee tree  𝛤+
𝑘 of k-th order, i.e., an infinite graph without cycles with k+1 edges issuing from each 

vertex except for x0 which has only k edges, that is |𝑆(𝑥)| = 2 (Cayley tree of order 2) for any 𝑥 ∈ 𝑉. 

 

In the case of Potts Model with spin values in 𝜙 = {1,2,3}, the relevant Hamiltonian with 

competing binary, ternary and quaternary interactions have the forms 
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𝐻(𝜎) = −𝐽1∑ 𝛿𝜎(𝑥)𝜎(𝑦)
〈𝑥,𝑦〉

− 𝐽𝑡 ∑ 𝛿𝜎(𝑥)𝜎(𝑦)𝜎(𝑧)
>𝑥,𝑦,𝑧̃<

− 𝐽𝑞 ∑ 𝛿𝜎(𝑥)𝜎(𝑦)𝜎(𝑧)𝜎(𝑤)
<𝑥,𝑦,𝑧,𝑤̃ >

          (1) 

 

where the first summation is over all first nearest-neighbor binary interactions, the second  summation 

is over all second nearest-neighbor ternary interactions and the third summation is over all third 

nearest-neighbor quaternary interactions. Here,  𝐽1, 𝐽𝑡 , 𝐽𝑞 ∈ ℝ are coupling constants, the symbol 𝛿 in 

first, second and third sum is the usual Kronecker symbol that is defined as:- 

 

𝛿𝜎(𝑥)𝜎(𝑦) = {
1,  𝑖𝑓 𝜎(𝑥) = 𝜎(𝑦),
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  

 

𝛿𝜎(𝑥)𝜎(𝑦)𝜎(𝑧) = {
1,  𝑖𝑓 𝜎(𝑥) = 𝜎(𝑦) = 𝜎(𝑧),
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

𝛿𝜎(𝑥)𝜎(𝑦)𝜎(𝑧)𝜎(𝑤) = {
1,  𝑖𝑓 𝜎(𝑥) = 𝜎(𝑦) = 𝜎(𝑧) = 𝜎(𝑤),
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                 (2) 

 

The spin variables 𝜎(𝑥) assume the values 1, 2 and 3. Noting that, if 𝐽𝑞 = 0 then the 

Hamiltonian (1) is reduced to Hamiltonian in [9]. The phase diagram for 𝐽𝑞 = 0 has a very simple 

structure that consists of four phases: paramagnetic, ferromagnetic, antiphase and modulated phases. 

3.  Basic Equations 

Next, we want to study the phase diagrams of Potts Model with competing binary-ternary-quaternary 

interaction on the same branch of second order of Cayley Tree. In order of that, we are going to derive 

the recurrence equations from the partition functions that are defined on second order of Cayley Tree. 

 

By following the ideas of producing the recurrent equations in [11], we consider the relation 

of the partition function on 𝑉𝑛+1 to the partition function on its subsets 𝑉𝑛. Then, the recurrent 

equations indicate how their influence propagates down the tree by giving the initial conditions on 𝑉2. 

We extend one level up of successive generations from the previous case done in [9] by taking into 

account the partial partition functions for all possible configurations of the spins in three successive 

generations. 

 

  

(a) (b) 
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Figure 1. (a) A double-trunk Cayley tree Γ(𝑥0,𝑦,𝑧)
2 , which from 𝑥0 emanates single edge  < 𝑥0, 𝑦 > and 

from vertex 𝑦 emanates two edges < 𝑥0, 𝑦 > < 𝑦, 𝑧 >;  (b) A configuration on 𝑉3
(𝑥0,𝑦,𝑧)

 with fixed 

boundary conditions 𝜎̅2 ≡ 1  . 

     

Now, we will consider the partition functions 𝑍(𝑛)(𝜎(𝑥0), 𝜎(𝑦), 𝜎(𝑧); 𝜎̅𝑛) on 𝑉𝑛
(𝑥0,𝑦,𝑧)

 with 

the configuration on double-trunk Cayley tree (𝑥0, 𝑦, 𝑧) is shown in the Figure 1(a), and given the 

boundary condition  𝜎̅𝑛. By considering all partition functions on  𝑉𝑛
(𝑥0,𝑦,𝑧)

 with fixed 𝑉2, under the 

boundary conditions 𝜎̅𝑛 ≡ 1, then we can show that there are 27 partition functions defined on a 

double-trunk Cayley tree. We assume that 𝐽𝑡 ≠ 0 and 𝐽𝑞 ≠ 0, and we choose the boundary condition 

𝜎̅𝑛 ≡ 1. If we consider all partition functions in volume 𝑉𝑛+1
(𝑥0,𝑦,𝑧)

 is shown in Figure 1(b), under the 

boundary condition 𝜎̅𝑛 ≡ 1, then we have 

 

𝑍(𝑛)(2,1,2) = 𝑍(𝑛)(1,3,2) = 𝑍(𝑛)(1,2,3) = 𝑍(𝑛)(2,1,3) 

= 𝑍(𝑛)(2,3,2) = 𝑍(𝑛)(3,1,2) = 𝑍(𝑛)(3,1,3) = 𝑍(𝑛)(3,2,3); 

𝑍(𝑛)(1,1,2) = 𝑍(𝑛)(1,1,3) = 𝑍(𝑛)(2,2,3) = 𝑍(𝑛)(3,3,2); 

𝑍(𝑛)(1,2,1) = 𝑍(𝑛)(1,3,1) = 𝑍(𝑛)(2,3,1) = 𝑍(𝑛)(3,2,1); 

𝑍(𝑛)(3,2,2) = 𝑍(𝑛)(1,3,3) = 𝑍(𝑛)(2,3,3) = 𝑍(𝑛)(1,2,2); 

𝑍(𝑛)(2,1,1) = 𝑍(𝑛)(3,1,1);  𝑍(𝑛)(2,2,1) = 𝑍(𝑛)(3,3,1); 

and  

Z(n)(3,3,3) = Z(n)(2,2,2). 

 

Then, 27 partition functions can be reduced to 8 variables 𝑍(𝑛)(1,1,1), 𝑍(𝑛)(1,1,2), 𝑍(𝑛)(1,2,1),

𝑍(𝑛)(2,1,1), 𝑍(𝑛)(2,1,2), 𝑍(𝑛)(2,2,1), 𝑍(𝑛)(3,2,2), 𝑍(𝑛)(3,3,3). We define for convenience the 

following variables: 

 

   𝑢1
(𝑛) = √𝑧(𝑛)(𝜎𝑛 (

1 1 1 1
1 1
1

)) 
4

,    𝑢2
(𝑛) = √𝑧(𝑛)(𝜎𝑛 (

2 2 2 2
1 1
1

))
4

 , 

  𝑢3
(𝑛)
= √𝑧(𝑛)(𝜎𝑛 (

1 1 1 1
2 2
1

)) ,
4

    𝑢4
(𝑛)
= √𝑧(𝑛)(𝜎𝑛 (

1 1 1 1
1 1
2

)) 
4

, 

𝑢5
(𝑛) = √𝑧(𝑛)(𝜎𝑛 (

2 2 2 2
1 1
2

))
4

 ,    𝑢6
(𝑛)
= √𝑧(𝑛) (𝜎𝑛 (

1 1 1 1
2 2
2

)) 
4

, 

𝑢7
(𝑛) = √𝑧(𝑛)(𝜎𝑛 (

2 2 2 2
2 2
3

))
4

, and  𝑢8
(𝑛)
= √𝑧(𝑛)(𝜎𝑛 (

3 3 3 3
3 3
3

))
4

 .               (3) 

 

Establishing the following recursive relations is straightforward. The primed variables (𝑢1
′ , … , 𝑢8

′ ) 

correspond to (𝑢1
(𝑛+1)

, … , 𝑢8
(𝑛+1)

), with 𝑎 = exp (
𝐽1

𝑘𝐵𝑇
) 𝑏 = exp (

𝐽𝑡

𝑘𝐵𝑇
) and 𝑐 = exp (

𝐽𝑞

𝑘𝐵𝑇
) can be 

obtained as follows:- 



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1489/1/012023

5

 

 

 

 

 

 

𝑢1
′ = √𝑎 𝑏 (𝑐𝑢1

(𝑛)
+ 2 𝑢2

(𝑛)
)
2
,   𝑢2

′ = √𝑎 (𝑢3
(𝑛)
+ 𝑢5

(𝑛)
+ 𝑢7

(𝑛)
)
2
,    𝑢3

′ = (𝑢4
(𝑛)
+ 2𝑢5

(𝑛)
)
2
,            

𝑢4
′ = (𝑢1

(𝑛)
+ 2 𝑢2

(𝑛)
)
2
,    𝑢5

′ = (𝑢3
(𝑛)
+ 𝑢5

(𝑛)
+ 𝑢7

(𝑛)
)
2
 ,   𝑢6

′ = √𝑎 (𝑢4
(𝑛)
+ 2𝑢5

(𝑛)
)
2
, 

𝑢7
′ = ( 𝑢2

(𝑛)
+ 𝑢6

(𝑛)
+ 𝑢8

(𝑛)
)
2
   and      𝑢8

′ = √𝑎 𝑏 ( 𝑢2
(𝑛)
+ 𝑢6

(𝑛)
+ 𝑐𝑢8

(𝑛)
)
2
.  

 

Noting that  𝑢2
′ = √𝑎 𝑢5

′  and  𝑢6
′ = √𝑎 𝑢3

′ , then, only six independent variables remain, and the 

recurrence system takes the simpler form: 

 

𝑢1
′  = √𝑎 𝑏 (𝑐𝑢1

(𝑛)
+ 2√𝑎 𝑢5

(𝑛)
)
2
,                   𝑢3

′ = (𝑢4
(𝑛)
+ 2𝑢5

(𝑛)
)
2
, 

𝑢4
′ = (𝑢1

(𝑛)
+ 2√𝑎 𝑢5

(𝑛)
)
2
,                               𝑢5

′ = (𝑢3
(𝑛)
+ 𝑢5

(𝑛)
+ 𝑢7

(𝑛)
)
2
,     

𝑢7
′ = (√𝑎 𝑢5

(𝑛)
+ √𝑎 𝑢3

(𝑛)
+ 𝑢8

(𝑛)
)
2
   and     𝑢8

′ = √𝑎 𝑏 (√𝑎 𝑢5
(𝑛)
+ √𝑎 𝑢3

(𝑛)
+ 𝑐𝑢8

(𝑛)
)
2
. 

 

Then, the total partition function is given in terms of (𝑢𝑖
(𝑛)
) by: 

 

𝑍(𝑛) = [(𝑢1
(𝑛) + 2√𝑎 𝑢5

(𝑛))
2
+ 2(𝑢3

(𝑛) + 𝑢5
(𝑛) + 𝑢7

(𝑛))
2
]
2

 

+2 [(𝑢8
(𝑛) + √𝑎 ( 𝑢3

(𝑛) +  𝑢5
(𝑛)))

2

+ (𝑢3
(𝑛) + 𝑢5

(𝑛) + 𝑢7
(𝑛))

2
+ (𝑢4

(𝑛) + 2𝑢5
(𝑛))

2
]

2

. 

 

Note that in the paramagnetic phase (high symmetry phase), we have 𝑢1 = 𝑢8, 𝑢4 = 𝑢7 and 

𝑢3 = 𝑢5 [11]. Thus, for presenting the phase diagram, the possible choice of reduced variables is:- 

 

𝑥1 =
𝑢3 + 𝑢5
𝑢1 + 𝑢8

;      𝑥2 =
𝑢4 + 𝑢7
𝑢1 + 𝑢8

;       𝑦1 =
𝑢1 − 𝑢8
𝑢1 + 𝑢8

;      𝑦2 =
𝑢3 − 𝑢5
𝑢1 + 𝑢8

;       𝑦3 =
𝑢4 − 𝑢7
𝑢1 + 𝑢8

.                    (4) 

 

Lastly, for general system of recurrent equations for the Potts model, equation (1), on a 

Cayley tree of order 2 can be produced as the following: 

 

𝑥1
′ = 

1

𝑏 ⋅ 𝐴
[𝑥2
   2 + 4𝑥2𝑥1 − 2𝑥2𝑦2 + 𝑦3

   2 − 2𝑦3𝑦2 + 4𝑥1
   2 − 4𝑥1𝑦2 + 2𝑦2

   2], 

 

𝑥2
′ = 

1 

𝑏 ⋅ 𝐴
[1 + 4√𝑎 𝑥1 − 2√𝑎 𝑦2 + 𝑦1

  2 − 2√𝑎 𝑦2𝑦1 + 4𝑎𝑥1
   2 − 4𝑎𝑥1𝑦2 + 2𝑎𝑦2

   2], 

 

𝑦1
′ =

−2 

𝐴
[−√𝑎 𝑐2𝑦1 + 𝑎𝑐𝑦2 − 2𝑎𝑐𝑦1𝑥1 + 𝑎𝑐𝑦1𝑦2 + 2𝑎

3
2⁄ 𝑥1𝑦2 − 𝑎

3
2⁄ 𝑦2
   2],    

 

𝑦2
′ = 

−2

𝑏 ⋅ 𝐴
[−𝑥2𝑦3 + 𝑥2𝑦2 − 2𝑦3𝑥1 + 𝑦3𝑦2 + 2𝑥1𝑦2 − 𝑦2

   2], 

 

𝑦3
′ = 

2 

𝑏 ⋅ 𝐴
[𝑦1 −√𝑎 𝑦2 + 2√𝑎 𝑦1𝑥1 − √𝑎 𝑦1𝑦2 − 2𝑎𝑥1𝑦2 + 𝑎𝑦2

   2]                                                         (5) 

 

where, 

 

𝐴 = (√𝑎 𝑐2 + 4𝑎𝑐𝑥1 − 2𝑎𝑐𝑦2 + √𝑎 𝑐
2𝑦1
  2 − 2𝑎𝑐𝑦1𝑦2 + 4𝑎

3
2⁄ 𝑥1
   2 − 4𝑎

3
2⁄ 𝑥1𝑦2 + 2𝑎

3
2⁄ 𝑦2
   2). 



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1489/1/012023

6

 

 

 

 

 

 

The average magnetization 𝑚 for  the Nth generation is given by 

 

𝑚 =
𝐵2 − 𝐶2

𝐶2 + 2𝐵2
                                                                                 (6) 

 

where, 

 

𝐵 = 1 − 2𝑦1 + 4√𝑎 𝑥1 + 𝑦1
2 − 4𝑦1√𝑎 𝑥1 + 4𝑎𝑥1

2 + 2𝑥2
2 + 8𝑥1𝑥2 + 2𝑦3

2 + 8𝑥1
2 − 8𝑥1𝑦2 + 4𝑦2

2

− 4𝑥2𝑦2 − 4𝑦2𝑦3; 
 

𝐶 = 1 + 2𝑦1 + 4√𝑎 𝑥1 − 4√𝑎𝑦2 + 𝑦1
2 + 4𝑦1√𝑎 𝑥1 − 4𝑦1√𝑎 𝑦2 + 4𝑎𝑥1

2 − 8𝑎𝑥1𝑦2 + 4𝑎𝑦2
2

+ 2𝑥2
2 − 4𝑥2𝑦3 + 8𝑥1𝑥2 + 2𝑦3

2 − 8𝑥1𝑦3 + 8𝑥1
2. 

4.  Morphology of Phase Diagrams 

Now, we are going to produce the phase diagrams by studying the detailed behavior of the recurrence 

system of equations. This can be achieved numerically in a straightforward fashion. Starting from the 

initial conditions:- 

𝑥1
(1)
=

𝑎2 + 1

𝑎2𝑏(𝑎2𝑏2𝑐2 + 1)
;     𝑥2

(1)
=

𝑎2𝑏2 + 1

𝑎𝑏(𝑎2𝑏2𝑐2 + 1)
; 

 

𝑦1
(1)
=
𝑎2𝑏2𝑐2 − 1

(𝑎2𝑏2𝑐2 + 1)
;   𝑦2

(1)
=

𝑎2 − 1

𝑎2𝑏(𝑎2𝑏2𝑐2 + 1)
;   𝑦3

(1)
=

𝑎3𝑏2 − 𝑎

𝑎2𝑏(𝑎2𝑏2𝑐2 + 1)
.                 (7)  

 

that corresponds to boundary condition 𝜎̅𝑛 ≡ 1, one iterates the recurrence relations in equation (5) 

and observes the behavior after a large number of iterations. If its attractor is a fixed point 

(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗, 𝑦3
∗), then it corresponds to a paramagnetic phase when 𝑦1

∗ = 𝑦2
∗ = 𝑦3

∗ = 0, or 

corresponds to a ferromagnetic phase when 𝑦1
∗, 𝑦2

∗, 𝑦3
∗ ≠ 0. The finite attractor corresponds to periodic 

(commensurate) phase and infinite attractor corresponds to aperiodic (incommensurate) phase. 

 

  
(a) (b) 

Figure 2. (a) Phase diagrams of 𝛼 vs  𝛽 for the model with 𝐽𝑞 = 0;  (b) Phase diagrams of 𝛼 vs  −𝛿 

for the model with 𝐽𝑡 = 0 

 

Let 𝛼 = 𝑘𝐵𝑇 𝐽1⁄ , 𝛽 = −𝐽𝑡 𝐽1⁄  and 𝛿 = 𝐽𝑞 𝐽1⁄ . The phase diagram in the Figure 2(a) showed 

the result that was done by [9] for the case 𝐽𝑞 = 0 in equation (1). Then, the extension results from the 

previous case, the phase diagrams are shown in Figure 2(b) and Figure 3 if we considered for nonzero 

𝐽𝑞 case. (Note that P - paramagnetic, F - ferromagnetic, AF - antiferromagnetic, <3> - antiphase with 

period 6, <2> - antiphase with period 4 and M - modulated phase). 
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The phase diagram for the case 𝐽𝑞 = 0, consists of ferromagnetic, paramagnetic, a periodic 

(− − ++)  antiphase <2> and modulated phase with 𝑝 > 12, where these phases meet at a nonzero 

temperature multicritical point [9]. For extension case (𝐽𝑞 ≠ 0), the resultant phase diagrams in the 

Figure 3 show the appearance of a periodic (+ − + −+−) antiphase <3> in addition to the previous 

one and also phase of antiferromagnetic for  𝛿 = −2 and 𝛿 = 1. 

 

However, by considering the case for nonzero 𝐽𝑞 and fixed the parameter 𝐽𝑡 = 0 for this 

model, then the resultant phase diagram as shown in the Figure 2(b) shows that the replacement phase 

of antiphase <3> with period 6 to the antiphase <2> with period 4 as shown in the Figure 2(a) (for the 

case nonzero 𝐽𝑡 and fixed the parameter 𝐽𝑞 = 0).     

 

  

(a) (b) 

Figure 3. (a) Phase diagrams of 𝛼 vs 𝛽 for the model with 𝛿 = −2 ;  (b) Phase diagrams of 𝛼 vs 𝛽 for 

the model with 𝛿 = 1 . 

5.  Variation of Wavevector with Temperature and The Lyapunov Exponent 

In this section, we are going to study the set modulated phase in detail by conducting an investigation 

on the wavector by varying the temperature and the Lyapunov exponent. 

 

 

(a)                             (b) 

Figure 4. Variation of the wavevector 𝑞 versus tempeture: (a) = 0.2 ;  (b) 𝛽 = 0.4 with 𝛿 = −2. 

 

The definition of the wavevector that is convenient for numerical purpose is 

𝑞 = lim
𝑁→∞

𝑛(𝑁)

2𝑁
, 
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where 𝑛(𝑁) is the number of times the magnetization in equation (6) changes sign during 𝑁 

successive iterations [11]. A graph of 𝑞 versus 𝛼 is drawn in the Figure 4 for (a) 𝛽 = 0.2 and (b) 𝛽 =
0.4 at the fixed value of 𝛿 = −2. By referring to the phase diagram in the Figure 3(a), one can see that 

the value of q starts with 𝑞 ≈ 0.1667  in the Figure 4(a), is indicating to the phase of antiphase <3> , 

while in the Figure 4(b) the value of q starts with  𝑞 = 0.25 is indicating to phase of antiphase <2>. 

These phases are stable and it can be proved by computing the Lyapunov exponent, which is negative 

value. We investigate the modulated phase, with the phase being indicated by many different values of 

𝑞. According to the general theory, the present of main locking steps can be located by investigating a 

function of 𝑞(𝑇) in detail. This interval can be very narrow; moreover, the distinction between long-

periodic cycles and truly aperiodic solutions is difficult to achieve numerically. The answer to this 

problem consists in computing the Lyapunov exponent associated with the trajectory of the system, as 

discussed and presented in Reference 11. 

 

The Lyapunov exponent is needed to show a behavior which is the logarithm of the largest 

eigenvalue has a simple fixed point (attractor). The Lyapunov exponent also tells us whether an 

infinitesimal perturbation of the initial conditions will have an infinitesimal effect (negative exponent) 

or will lead to a totally different trajectory (positive exponent). The calculation of the Lyapunov 

exponent for Potts model can be summarized as follows: the recurrent equations in equation (5) are 

linearized around the successive points of the trajectory, yielding linear recurrent equations for the 

perturbations (𝛿𝑥1,  𝛿𝑥2,  𝛿𝑦1,  𝛿𝑦2,  𝛿𝑦3) (see the discussion detailed in Reference 11). In matrix form, 

one has 

𝑉𝑘+1 =

(

  
 

𝛿𝑥1
′

𝛿𝑥2
′

𝛿𝑦1
′

𝛿𝑦2
′

𝛿𝑦3
′)

  
 
= 𝐿𝑘

(

 
 

𝛿𝑥1
𝛿𝑥2
𝛿𝑦1
𝛿𝑦2
𝛿𝑦3)

 
 
, 

 

where the matrix 𝐿𝑘 depends on the iteration step. The Lyapunov exponent 𝜆 is obtained as 

𝜆 = lim
𝑁→∞

1

𝑁
log(‖𝑉𝑁‖) , 

where ‖𝑉𝑁‖ denotes the norm of the vector 𝑉. Stable limit cycles may exist only for negative 

exponents. 

 

In the Figure 5, at fixed value of 𝛿 = −2, the value of 𝛽 = 0.2 was chosen because q is close 

to 2 11⁄  and 5 29⁄ . The stability intervals for these values of 𝑞 are rather narrow: from 𝛼 ∈
(0.1620,0.1657) (see the Figure 5(c)), and 𝛼 ∈ (0.1250,0.1253) (see the Figure 5(d)) respectively. 

Next, we calculate the Lyapunov exponent for verifying the stability of the phases in the set of 

modulated phases. Then, every region of negative 𝜆 is numerically found to coincide with the stability 

domain of a given cycle. So, for this case, the results are obtained for a cycle of period with 𝑁 =
10000 iteration steps (the initial 1000 steps are discarded for each value of 𝑇, as discussed in 

Reference 11).  

 

As the result in the Figure 5(a) shows that the present of the variation of Lyapunov exponent for a 

stability cycle of period 11 for  𝛽 = 0.2 with the fixed value of 𝛿 = −2. Moreover, we show a 

stability cycle of period 29 in the Figure 5(b) for the same case but the different regions of 𝛼. 
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(a) (c) 

  
(b) (d) 

Figure 5. (a) and (b) Variation of the Lyapunov exponent 𝜆 versus temperature for 𝛽 = 0.2 with fixed 

value of 𝛿 = −2 in the regions of commensurate steps (c) 𝑞 ≈ 2 11⁄  and (d) 𝑞 ≈ 5 29⁄  enlarged from 

Fig. 4(a), corresponding to Fig. 3(a). 

 

Then, for the same fixed value of 𝛿 as stated previously, the value of 𝛽 = 0.4 was selected 

and the result finds that q is close to 2 9⁄  and 4 17⁄  as are shown in the Figure 6. By using the same 

way, the stability intervals for these values of q are rather narrow: from 𝛼 ∈ (0.2133,0.2248) (see the 

Figure 6(c)), and 𝛼 ∈ (0.1248, 0.1255) (see the Figure 6(d)) respectively. For the verification of the 

stability of the phases for this case, the results are shown in the Figure 6(a) and Figure 6(b). Then, we 

found that the stable regions with 𝑞 ≈ 2 9⁄  (see the Figure 6(c)), corresponding to a limit of cycle of 

period 9 (see the Figure 6(a)) and for 𝑞 ≈ 4 17⁄  (see the Figure 6(d)), corresponding to a limit cycle of 

period 17 (see the Figure 6(b)). 

  
(a) (c) 



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1489/1/012023

10

 

 

 

 

 

 

  
(b) (d) 

Figure 6. (a) and (b) Variation of the Lyapunov exponent 𝜆 versus temperature for 𝛽 = 0.4 with fixed 

value of 𝛿 = −2 in the regions of commensurate steps (c) 𝑞 ≈ 2 9⁄  and (d) 𝑞 ≈ 4 17⁄  enlarged from 

the Figure 4(b), corresponding to the Figure 3(a). 

 

Numerically, every region of negative 𝜆 is found to coincide with the stability domain of a 

given cycle. Finally, all stable limit cycles can be confirmed by checking the trajectory of the system 

in equation (5) corresponding to the given interval of 𝛼, as presented in the Figure 5 and the Figure 6. 

 

6.  Conclusion 

In this research, we have considered Potts Model with competing binary-ternary-quaternary interaction 

on Cayley tree of second order. We produced the general recurrence system of equations, and study its 

behavior for producing the phase diagrams for extension result obtained by [9]. In resultant phase 

diagrams, we found a new antiphase <3> with period 6 and antiferromagnetic phase in addition to the 

expected paramagnetic, ferromagnetic, antiphase <2> with period 4 and modulated phases. Then, if we 

considered the case of nonzero 𝐽𝑞 and fixed the parameter 𝐽𝑡 = 0, the phase diagram shows that the 

replacement phase of antiphase <3> with period 6 to the antiphase <2> with period 4 in the previous 

result. In addition, the commensurate phases with periods 𝑝 = 9,11,17 and 29 can be found in the set 

of modulated phases. Futhermore, we studied the variation of the wavevector with temperature in a 

modulated phase by using Lyapunov exponent associated with trajectory of the system. Finally, we 

found that stability of a limit cycle of period 𝑝 > 6 can be found in a narrow interval in the modulated 

phase. 
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